Citation list for Eigenstates of two-photon annihilation operators

CL Mehta, AK Roy, GM Saxena – Physical Review A, 1992 – APS

73 citations (as per Google Scholar, http://scholar.google.com/scholar?hl=en&q=Eigenstates+of+two-photon+annihilation+operators&btnG=)

  1. “Exact solvability of the quantum Rabi model using Bogoliubov operators”, Qing-Hu Chen, Chen Wang, Shu He, Tao Liu, and Ke-Lin Wang, Phys. Rev. A, 86, p. 023822 (2012).
  2. “Generation of hidden optical-polarization: Squeezing and non-classicality”, Gyaneshwar K. Gupta, Akhilesh Kumar, and Ravi S. Singh, Optics Communications, 284, p. 4951 (2011).
  3. “Exact Solution for a Multiphoton Generalized Jaynes-Cummings Model with Inverse Operators”, Qun Li, International Journal of Theoretical Physics, 49, p. 842 (2010).
  4. “Quasiprobability distributions of new kinds of even and odd nonlinear coherent states”, Meng Xiang-Guo, Wang Ji-Suo, and Liang Bao-Long, Chinese Physics B, 18, p. 2300 (2009).
  5. “Photon-added and photon-subtracted displaced Fock states and their non-classical properties”, Si Kun, Zhang Miao, and Jia Huan-Yu, Chinese Physics B, 18, p. 4887 (2009).
  6. “Generalized hypergeometric photon-added and photon-depleted coherent states”, M N Hounkonnou and E B Ngompe Nkouankam, Journal of Physics A: Mathematical and Theoretical, 42, p. 025206 (2009).
  7. “Two-step approach to the dynamics of coupled anharmonic oscillators”, N. N. Chung and L. Y. Chew, Phys. Rev. A, 80, p. 012103 (2009).
  8. “Quantum fluctuations of mesoscopic damped double resonance RLC circuit with mutual capacitance–inductance coupling in thermal excitation state”, Xu Xing-Lei, Li Hong-Qi, and Wang Ji-Suo, Chinese Physics, 16, p. 2462 (2007).
  9. “Phase properties of new even and odd nonlinear coherent states”, Xiang-Guo Meng, Ji-Suo Wang, and Bao-Long Liang, Physica A: Statistical Mechanics and its Applications, 382, p. 494 (2007).
  10. “New Even and Odd Nonlinear Coherent States and Their Nonclassical Properties”, Meng Xiang-Guo, Wang Ji-Suo, and Li Yan-Ling, International Journal of Theoretical Physics, 46, p. 1205 (2007).
  11. “Energy eigenvalues and squeezing properties of general systems of coupled quantum anharmonic oscillators”, N. N. Chung and L. Y. Chew, Phys. Rev. A, 76, p. 032113 (2007).
  12. “New photon-added and photon-depleted coherent states associated with inverse q-boson operators: nonclassical properties”, M H Naderi, M Soltanolkotabi, and R Roknizadeh, Journal of Physics A: Mathematical and General, 37, p. 3225 (2004).
  13. “Eigenvalue equation of squeezed coherent states and time evolution of squeezed states”, G M Saxena, Journal of Physics A: Mathematical and General, 35, 8953 (2002).
  14. Nonclassical’states in quantum optics: a ‘squeezed’review of the first 75 years
    VV Dodonov – J. Opt. B – iop.org
    Page 1. I NSTITUTE OF P HYSICS P UBLISHING J OURNAL OF O PTICS B: Q UANTUM AND SEMICLASSICAL O PTICS J. Opt. B: Quantum Semiclass. Opt. 4 (2002) R1–R33.
  15. Unified approach to multiphoton coherent states
    P Shanta, S Chaturvedi, V Srinivasan, GS Agarwal, … – Physical Review Letters, 1994 – APS.
  16. Studies on nonlinear coherent states
    S Sivakumar – J. Opt. B: Quantum Semiclass. Opt, 2000 – iop.org
    Page 1. J. Opt. B: Quantum Semiclass. Opt. 2 (2000) R61–R75.
  17. Geometric phases for generalized squeezed coherent states
    S Seshadri, S Lakshmibala, V Balakrishnan – Physical Review A, 1997 – APS
  18. Inverse q-boson operators and their relation to photon-added and photon-depleted states
    LF Wei, SJ Wang, DP Xi – Journal of Optics B: Quantum and Semiclassical Optics, 1999 – iop.org
    Page 1. J. Opt. B: Quantum Semiclass. Opt. 1 (1999) 619–623.
  19. Photon-added coherent states as nonlinear coherent states
    S Sivakumar – J. Phys. A: Math. Gen, 1999 – iop.org
    Page 1. J. Phys. A: Math. Gen. 32 (1999) 3441–3447.
  20. Ladder operators for isospectral oscillators
    S Seshadri, V Balakrishnan, S Lakshmibala – Journal of Mathematical Physics, 1998 – link.aip.org
  21. New photon-added and photon-depleted coherent states associated with inverse-boson operators: …
    MH Naderi, M Soltanolkotabi, R Roknizadeh – Journal of Physics A Mathematical and General, 2004 – iop.org
    Page 1. I NSTITUTE OF P HYSICS P UBLISHING J OURNAL OF P HYSICS A: M ATHEMATICAL AND G ENERAL J. Phys. A: Math. Gen. 37 (2004) 3225–3240.
  22. Squeezed Vector and Its Phase Distribution in a Deformed Hilbert Space
    PK Das – International Journal of Theoretical Physics, 2001 – Springer
    Page 1. International Journal of Theoretical Physics, Vol. 40, No. 4, 2001.
  23. Inverse operators in Fock space studied via a coherent-state approach, Fan Hong-yi, Phy. Rev. A, 47, 4521-23 (1993).
  24. On the Coherent States Associated with Deformed Bogoliubov (p, q)-Transformations without First …
    I Isfahan – Progress of Theoretical Physics, 2004 – ptp.ipap.jp
    Page 1. 811 Progress of Theoretical Physics, Vol. 112, No. 5, November 2004.
  25. Inhomogeneous inverse differential realization of multimodeSU (2) group
    Z Yu, Y Liu – International Journal of Theoretical Physics, 1997 – Springer
    Page 1. International Journal of Theoretical Physics, Vol. 36, No. 12, 1997.
  26. Inhomogeneous Inverse Differential Realization of Multimode SU (1, 1) Group
    ZX Yu, YH Liu – International Journal of Theoretical Physics, 1998 – Springer
    Page 1. International Journal of Theoretical Physics, Vol. 37, No. 6, 1998.
  27. Approach to a generalized Jaynes-Cummings model and the geometric phase
    Z Tang – Physical Review A, 1995 – APS.
  28. Eigenvalue equation of squeezed coherent states and time evolution of squeezed states
    GM Saxena – Journal of Physics A Mathematical and General, 2002 – iop.org
    Page 1. INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND GENERAL J. Phys. A: Math. Gen. 35 (2002) 8953–8960.
  29. Operator for Optical Polarization
    H PRAKASH, RS SINGH – Journal of the Physical Society of Japan, 2000 – jpsj.ipap.jp
    Page 1. Journal of the Physical Society of Japan Vol. 69, No. 1, January, 2000,
    pp. 284-285 Short Notes Operator for Optical Polarization.
  30. Right-unitary transformation theory and applications
    Z Tang – Physical Review A, 1996 – APS.
  31. Atomic, Molecular and Optical Physics, abstract atom-ph/9604008
    Z Tang – arxiv.org
    Page 1. arXiv:atom-ph/9604008 v1 30 Apr 1996 Right-unitary transformation theory
    and applications Zhong Tang* School of Physics, Georgia.
  32. Anti-bunching effects of the photon-depleted squeezed vacuum states.
    J Sun, Q Yang, L Ding – Guangxue Xuebao(Acta Optica Sinica), 2005 – csa.com.
  33. Boson Inverse Operators and a New Family of Two-photon Annihilation Operators
    AK Roy, CL Mehta – Journal of Modern Optics, 1995 – Taylor & Francis
    Page 1. JOURNAL OF MODERN OPTICS, 1995, VOL . 42, NO . 3, 707-719.
  34. Photon-added one-photon and two-photon nonlinear coherent states
    X Wang – Canadian Journal of Physics, 2001 – article.pubs.nrc-cnrc.gc.ca.
  35. Inhomogeneous Inverse Differential Realization of Two-Parameter Deformed Quasi-SU (1, 1) q, s Group
    Z Yu, Y Liu – International Journal of Theoretical Physics, 1999 – Springer
    Page 1. International Journal of Theoretical Physics, Vol. 38, No. 7, 1999.

 

Citation list for “A morphology based method for car license plate extraction”

P.V. Suryanarayana, Suman K. Mitra, Asim Banerjee and Anil K. Roy, INDICON, 2005 Annual IEEE, pp. 24- 27, 11-13 Dec. 2005, URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1590116&isnumber=33509

47 citations (as per Google Scholar, http://scholar.google.com/scholar?q=A+morphology+based+method+for+car+license+plate+extraction&btnG=&hl=en&as_sdt=0%2C5)

  1. Anagnostopoulos, C.-N.E.; Anagnostopoulos, I.E.; Psoroulas, I.D.; Loumos, V.; Kayafas, E.; , “License Plate Recognition From Still Images and Video Sequences: A Survey,” Intelligent Transportation Systems, IEEE Transactions on , vol.9, no.3, pp.377-391, Sept. 2008 (http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4518951&isnumber=4608839)
  2. Alegria, F.; Girao, P.S.; , “Vehicle Plate Recognition for Wireless Traffic Control and Law Enforcement System,” Industrial Technology, 2006. ICIT 2006. IEEE International Conference on , vol., no., pp.1800-1804, 15-17 Dec. 2006
    (http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4237826&isnumber=4237511)
  3. A Novel Multiple License Plate Extraction Technique for Complex Background in Indian Traffic Conditions, C N Paunwala and Suprava Patnaik, International Journal of Image Processing, vol. 4, issue 2, pp. 106-118, 2010.
  4. An Efficient Geometric feature based License Plate Localization and Recognition, CNK Babu, K Nallaperumal, International Journal of Imaging Science and Engineering, vol. 2, no. 2, pp. 189-194, April 2008.
  5. Wenju Li, Zhengqiang Zhu, Zhouen Jiang, “A New Method for License Plate Location Based on Top-Hat Transform and Wavelet Transform,” Innovative Computing ,Information and Control, International Conference on, pp. 958-961, 2009 Fourth International Conference on Innovative Computing, Information and Control, 2009.
  6. Babu, C.N.K.; Nallaperumal, K.; , “A license plate localization using morphology and recognition,” India Conference, 2008. INDICON 2008. Annual IEEE , vol.1, no., pp.34-39, 11-13 Dec. 2008
    (http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4768797&isnumber=4768787).
  7. Fast License Plate Localization Using Discrete Wavelet Transform, Yuh-Rau Wang, Wei-Hung Lin and Shi-Jinn Horng, Lecture Notes in Computer Science, Volume 5574/2009, pp. 408-415, 2009.
  8. A preprocessing method to remove smears in vehicle license plate using stereo vision, JP Jang, DS Lee, HW Kim, R Do, YM Kim

 

Citation list for Boson inverse operators and associated coherent states

AK Roy, CL Mehta – Quantum Semiclass. Opt, 1995 – iop.org

10 citations (as per Google Scholar, http://scholar.google.co.in/scholar?cites=15568111221562291666&as_sdt=2005&sciodt=0,5&hl=en)

  1. Nonclassical’states in quantum optics: a ‘squeezed’review of the first 75 years VV Dodonov – J. Opt. B – iop.org
    Page 1. INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF OPTICS B: QUANTUM AND SEMICLASSICAL OPTICS J. Opt. B: Quantum Semiclass. Opt. 4 (2002) R1–R33.
  2. Representations of coherent states in non-orthogonal bases
    ST Ali, R Roknizadeh, MK Tavassoly – Journal of Physics A Mathematical and General, 2004 – iop.org
    Page 1. INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND GENERAL J. Phys. A: Math. Gen. 37 (2004) 4407–4422.
  3. Unifying the Construction of Various Types of Generalized Coherent States
    MK Tavassoly – Arxiv preprint quant-ph/0510118, 2005 – arxiv.org
    Page 1. arXiv:quant-ph/0510118 v1 15 Oct 2005.
  4. Dynamical properties of degenerate parametric amplifier with photon-added coherent states, VV Abdalla M.S., El-Orany F.A.A. and Perina J., Nuovo Cimento B, 116 (2), 137-153 (2001).
  5. Inverse q-boson operators and their relation to photon-added and photon-depleted states, Wei L.F., Wang S.J. and Xi D.P., J. Opt. B, 1 (6), 619-623 (1999).
  6. Dynamic squeezing of photon-added coherent states, Dodonov V.V., Marchiolli M.A., Korennoy Y.A., et. al., Phy. Rev. A, 58 (5), 4087-4094 (1998).
  7. Parametric excitation of photon-added coherent states, Dodonov V.V., Marchiolli M.A., Korennoy Y.A., et. al., Phys. Scripta, 58 (5), 469-480 (1998).
  8. Quantum state engineering using conditional measurement on a beam splitter, Dakna M., Knoll L. and Welsch D.G., Euro Phys. D., 3 (3), 295-307 (1998).

 

Citation list for Squeezed States Generated by Boson Creation Operator

AK Roy, CL Mehta – Journal of Modern Optics, 1992 – Taylor & Francis

6 citations (as per Google Scholar, http://scholar.google.co.in/scholar?cites=17833036844204305515&as_sdt=2005&sciodt=0,5&hl=en)

  1. Radon transform and pattern functions in quantum tomography

    A WU – Journal of Modern Optics, 1997 – Taylor & Francis

    Page 1. Radon transform and pattern functions in quantum tomography ALFRED

    WUÈNSCHE Arbeitsgruppe `Nichtklassische Strahlung’ der.

  2. The quantum-mechanical inhomogeneous symplectic group

    A Wunsche – JOURNAL OF OPTICS B QUANTUM AND SEMICLASSICAL OPTICS, 2002 – iop.org

    Page 1. I NSTITUTE OF P HYSICS P UBLISHING J OURNAL OF O PTICS B: Q UANTUM AND S

    EMICLASSICAL O PTICS J. Opt. B: Quantum Semiclass. Opt. 4 (2002) 1–14.

  3. The complete Gaussian class of quasiprobabilities and its relation to squeezed states and their …
    A Wunsche – iop.org
    Page 1. Quantum Semiclass. Opt. 8 (1996) 343–379. Printed in the UK The complete
    Gaussian class of quasiprobabilities and its relation.
  4. Reconstruction of quantum states from propensities
    A Wunsche, V Buzek – iop.org
    Page 1. Quantum Semiclass. Opt. 9 (1997) 631–653. Printed in the UK PII:
    S1355-5111(97)81960-4 Reconstruction of quantum states from propensities.
  5. The distance to poissonian statistics as a supplementary measure in quantum optics, A. Wiinsche, Appl. Phys. B, S110-S122 (1995).

 

Citation list for Boson Inverse Operators and a New Family of Two-photon Annihilation Operators

AK Roy, CL Mehta – Journal of Modern Optics, 1995 – Taylor & Francis

  1. Quantum Optical Phase, Pegg D.T., Barnett S.M., J. Mod. Opt., 44 (2), 225-264 (1997).
  2. The distance to poissonian statistics as a supplementary measure in quantum optics, A. Wiinsche, Appl. Phys. B, S110-S122 (1995).

 

Citation list for Role of bend on the optimization of 980-nm-pumped erbium-doped fiber amplifier

P Palai, K Thyagarajan, AK Roy, BP Pal – Optical Fiber Technology, 1995

3 citations (as per Google Scholar, http://scholar.google.co.in/scholar?cites=17730425111610977974&as_sdt=2005&sciodt=0,5&hl=en)

  1. Mozjerin, I.; Hardy, A.A.; Ruschin, S.; , “Effect of chip area limitation on gain and noise of erbium-doped waveguide amplifiers,” Selected Topics in Quantum Electronics, IEEE Journal of , vol.11, no.1, pp. 204- 210, Jan.-Feb. 2005
  2. Irene Mozjerin, Shlomo Ruschin, and Amos Hardy, “Tight packaging of erbium-doped waveguide amplifiers,” Appl. Opt., vol. 44, pp. 2659-2666 (2005)