<table>
<thead>
<tr>
<th>1. Course Title</th>
<th>Adaptive Signal Processing</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. Credit Structure</td>
<td>Lecture hours per week: 3</td>
</tr>
<tr>
<td></td>
<td>Tutorial hours per week: 0</td>
</tr>
<tr>
<td></td>
<td>Practical hours per week:0</td>
</tr>
<tr>
<td></td>
<td>Total Credits:3</td>
</tr>
<tr>
<td>3. Course Code</td>
<td>CT 477</td>
</tr>
<tr>
<td>4. Program/Semester</td>
<td>Technical Elective open to MTech</td>
</tr>
<tr>
<td>5. Category</td>
<td>Core / Group core / Technical Elective / Open Elective / Science Elective</td>
</tr>
<tr>
<td>6. Prerequisite courses</td>
<td>Signal Processing</td>
</tr>
<tr>
<td>7. Foundation for</td>
<td>-</td>
</tr>
<tr>
<td>8. Abstract Content</td>
<td>Introduction to Adaptive Filters, Stochastic Processes, Wiener Filters, Steepest Descent Technique, Least-Mean-Square Adaptive Filters, Other LMS-Based Adaptive Filters, Sparse Adaptive Filters, Recursive Least Square Adaptive Filters, Kalman Filters and Blind Decovolution.</td>
</tr>
<tr>
<td>Topic Name</td>
<td>Content (2 -3 lines per 4 – 6 lectures)</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>---</td>
</tr>
</tbody>
</table>
| **Introduction to Adaptive Filters** | • Brief discussion on digital filters.
 • An overview of adaptive filters.
 • Applications of adaptive filters. | 3 |
| **Stochastic Processes** | • Introduction to random variables, discrete time stochastic process.
 • Correlation matrix.
 • Auto regressive process.
 • Power spectral density and power spectrum estimation. | 4 |
| **Wiener Filters** | • Linear optimum filtering.
 • Wiener-Hopf equations.
 • Linearly constrained minimum-variance filter. | 3 |
| **Steepest Descent Technique** | • Basic idea of the steepest descent algorithm.
 • Stability of the steepest descent algorithm.
 • Newton’s algorithm. | 3 |
| **Least-Mean-Square Adaptive Filters** | • Least-mean-square (LMS) algorithm.
 • Stability of the LMS algorithm.
 • Sign LMS algorithm.
 • Variable step size LMS algorithm. | 6 |
| **Other LMS-Based Adaptive Filters** | • Normalized LMS (NLMS) algorithm.
 • Affine projection algorithm (APA).
 • Set-membership affine projection algorithm. | 5 |
| **Sparse Adaptive Filters** | • Proportionate NLMS (PNLMS) algorithm.
 • Zero attracting NLMS (ZA-NLMS) algorithm.
 • Zero attracting PNLS (ZA-PNLMS) algorithm. | 5 |
| **Recursive Least Square Adaptive Filters** | • Matrix inversion lemma.
 • Exponentially weighted recursive least square (RLS) algorithm.
 • Convergence analysis of the RLS algorithm. | 3 |
| **Kalman Filters** | • Innovation process.
 • Estimation of the states using the innovation | 3 |
Blind Deconvolution

- An introduction to blind deconvolution or blind equalizer.
- Bussgang algorithm for blind equalization.
- Fractionally spaced Bussgang equalizers.

Outcomes and Objectives

By the end of this course, the student should be able to do the followings:
1. To implement adaptive filters for various applications like echo cancellation and systems or channels identification.
2. To Analyze and implement Wiener filters, LMS, NLMS, APA, PNLMS, ZA-NLMS, ZA-PNLMS, RLS, Kalman Filters and Bussgang equalizers.

Course Assessment / Evaluation Method (Tentative)

Mid-Sem: 40%
End-Sem: 60%