1. Course Title | Software Engineering

2. Credit Structure | Lecture hours per week: 3
| Tutorial hours per week: 0
| Practical hours per week: 2
| Total Credits: 4

3. Course Code | IT632

4. Program/Semester | M.Sc. IT – 2nd Semester

5. Category | Core

6. Course Objective

The following are the objectives of the course:

- The goal of this course is to provide the student with a solid understanding of the foundations of software engineering.
- The course provides a solid foundation for students who want to develop their career in the broad field of computing and specifically in the areas of Information and Communication technology.
- The course aims at teaching the students how to apply key engineering principles and mathematical models to application development projects.
- The course emphasizes the complete lifecycle of the software development process and the students learn how to design, develop, test, and deploy software using rigorous software engineering practices.
- The course will aid the students in developing the skills and abilities of applying the fundamental concepts of computing in industrial, business and other problems, in order to produce software solutions.
- The course also introduces the students to the role of software tools in the process of software development.

This course has been designed to provide the students with the opportunity to apply the software engineering principles learned in this course to a project, that is also a part of this course. Students will work on a significant software development project that may include any or all activities associated with creating a software solution to a client/customer problem. They would be taken through all the software engineering activities that are typically experienced from the initiation to the completion of a software development project. Special emphasis has been placed on defining the client/customer problem and determining requirements by either working with real clients on real world problems. Teams are encouraged to work autonomously following good software engineering practices, with guidance in the form of lectures and tutorials, from the course instructor and teaching assistants. In addition, issue based assistance is provided as and when required or as and when the same is sought by the team members.
7. Expected Learning Outcomes

Upon completion of this course the student should be able to:

1. Enumerate and define the phases in the software development process.
2. Describe the activities performed in each of the phases and how each phase relates to the others.
3. Develop a coherent set of software requirements for a particular application.
4. Convert a set of requirements into a set of specifications that can be validated.
5. Apply any of several design methodologies to the design of a software work product.
6. Develop and implement a test plan that will adequately exercise a software work product with the purpose of discovering defects.
7. Enumerate and define the steps in the post-implementation phases.
8. Describe the activities associated with corrective, adaptive, and perfective maintenance.
9. Describe the activities associated with the configuration management process and relate its importance during software development and maintenance.
10. Perform an impact analysis for a change request as it applies to a software work product.
11. Perform all software engineering tasks associated with developing a software system or product requiring a team of software engineers.
12. At the end of the project, assess a software development effort to determine the appropriate principles and practices that will maximize the probabilities for success.

8. Additional Expectations

The student should be able to:

1. Analyze a software development project and determine the most appropriate software engineering principles and practices for the given situation.
2. Evaluate the effectiveness of a given set of software engineering practices and make recommendations for changes that can improve the software development project.
3. Analyze a software development project to determine missing or inappropriate software engineering practices.
4. Assess the quality of software engineering processes, practices, products, and artifacts associated with a software engineering development effort.
5. Demonstrate interpersonal and team skills that support maximizing their team’s effectiveness.

9. Special Expectations

The student should be able to:

1. Work collaboratively and cooperatively with others as a team that produces the required software engineering work products.
2. Create and deliver a quality presentation (individually and as part of a team presentation) related to selected aspects of software engineering processes, practices and work products associated with a software engineering project.
10. Books and Reference Material

- Rajib Mall, “Fundamentals of Software Engineering”, Prentice Hall of India

Course Content

1. Introduction to Software Engineering
2. Software Life Cycle Models
3. Software Requirements: Analysis and Specifications
4. Software Project Planning
5. Software Design
6. Software Metrics
7. Software Reliability
8. Software Testing
9. Software Maintenance
10. Computer Aided Software Engineering
11. Agile Software Engineering

Grading Policy

30% - Course Project and Experiments
20% - Mid Semester
35% - End Semester
10% - Quizzes

For delivery of Lecture/Lab sessions, I will use online platform (Cisco Webex). For discussion about doubts on topics I will use WhatsApp Chat/Call for one-to-one communication, and Online platform such as Google Meet for one-to-many communications. For uploading of Lecture slides, assignment problems I will use Google Classroom.