This course is for 3rd and 4th year B.Tech students. For students who wish to understand the basic foundations of Quantum Mechanics and the mathematical machinery used in developing the theory and its applications. Engineers in the field of Information, Communication and Computer Science who wish to have an exposure to the field of Quantum Information Theory, Quantum Communication and cryptography and Quantum Algorithms will benefit from this course. It is also for more practical oriented students who wish to catch up with the understanding of semiconductor devices based on Quantum Mechanics. This course will be followed by a course on Quantum Computation in the next semester.

Prerequisite: Linear Algebra, Mechanics, Electromagnetic Theory.

1. Motivation for quantum mechanics
 - Black body radiation
 - Photoelectric Effect
 - Wave-particle duality
 - Particle properties of waves
 - Wave properties of particles
 - De-Broglie wavelength
 - The uncertainty principle

2. Quantum Theory
 - Bohr model of the atom
 - Probability waves
 - Wave functions
 - Schrodinger’s equation
 - Operators, Eigenvalues and Expectationvalues

3. Applications
 - Particle in a box
 - Harmonic Oscillator
 - Hydrogen Atom

4. Angular Momentum
 - \(L \) and \(L_z \) Quantization
 - Spin, Stern Gerlach Experiment
 - Spin Quantization (S and Sz)

5. Approximate Methods
 - Perturbation Theory

6. Two level Systems
• Time evolution of spin in magnetic field
• Addition of Spin Angular momentum
• Symmetric and antisymmetric states.
• Density Operators and Ensembles.

7. • Bohm Aharanov Effect
 • Quantum Cryptography
 • Quantum Computers.

Evaluation: Quiz- 10 %, Two Insemester Test 40 %, Endsemester Test 50 %

Books:

1. Perspectives of Modern Physics
 Arthur Beiser

2. Feynmann Lectures in Physics Vol. 3
 Richard Feynmann

3. Quantum mechanics
 L.I. Schiff

4. Quantum Mechanics
 Eugene Mezbacher

5. Quantum mechanics
 John L. Powell and Bernd Crasemann

6. Quantum Mechanics
 Ghatak and Lokananthan

7. Modern Quantum Mechanics
 J. J. Sakurai