Single Source Shortest Paths (with Positive Weights)
Recall that we have already learned how to solve the SSSP problem in the following setting:

- Unit weight for all edges and arbitrary graphs: BFS, running time $O(|V| + |E|)$.
Recall that we have already learned how to solve the SSSP problem in the following setting:

- Unit weight for all edges and arbitrary graphs: BFS, running time $O(|V| + |E|)$.

We will see how to solve the problem in the more general situation where the edges can have arbitrary positive weights:
Recall that we have already learned how to solve the SSSP problem in the following setting:

- Unit weight for all edges and arbitrary graphs: BFS, running time $O(|V| + |E|)$.

We will see how to solve the problem in the more general situation where the edges can have arbitrary positive weights:

- Arbitrary weights and DAGs: The first algorithm in this lecture, running time $O(|V| + |E|)$.
Recall that we have already learned how to solve the SSSP problem in the following setting:

- Unit weight for all edges and arbitrary graphs: BFS, running time $O(|V| + |E|)$.

We will see how to solve the problem in the more general situation where the edges can have arbitrary positive weights:

- Arbitrary weights and DAGs: The first algorithm in this lecture, running time $O(|V| + |E|)$.
- Positive weights and arbitrary graphs: Dijkstra’s, running time $O((|V| + |E|) \cdot \log |V|)$.
Weighted Graphs

Let $G = (V, E)$ be a directed graph. Let w be a function that maps each edge in E to a positive real value. Specifically, for each $e \in E$, $w(e)$ is a positive real value, which we call the weight of e.

A directed weighted graph is defined as the pair (G, w).
The integer on each edge indicates its weight. For example, \(w(d, g) = 1 \), \(w(g, f) = 2 \), and \(w(c, e) = 10 \).
Consider a directed weighted graph defined by a directed graph $G = (V, E)$ and function w.

Consider a path in G: $(v_1, v_2), (v_2, v_3), \ldots, (v_l, v_{l+1})$, for some integer $l \geq 1$. We define the length of the path as

$$\sum_{i=1}^{l} w(v_i, v_{i+1}).$$

Recall that we may also denote the path as $v_1 \rightarrow v_2 \rightarrow \cdots \rightarrow v_{l+1}$.

Given two vertices $u, v \in V$, a shortest path from u to v is a path from u to v that has the minimum length among all the paths from u to v.

If v is unreachable from u, then the shortest path distance from u to v is ∞.
Example

The path $a \rightarrow d \rightarrow e$ has path length 11.

The path $a \rightarrow b \rightarrow c \rightarrow d \rightarrow g \rightarrow f \rightarrow e$ has length 8.

The second path is a shortest path from a to e.
Single Source Shortest Path (SSSP) with Positive Weights

Let \(G, w \) with \(G = (V, E) \) be a directed weighted graph, where \(w \) maps every edge of \(E \) to a positive value.

Given a vertex \(s \) in \(V \), the goal of the SSSP problem is to find, for every other vertex \(t \in V \setminus \{s\} \), a shortest path from \(s \) to \(t \), unless \(t \) is unreachable from \(s \).
A Subsequence Property

Lemma: If \(v_1 \rightarrow v_2 \rightarrow \cdots \rightarrow v_{l+1} \) is a shortest path from \(v_1 \) to \(v_{l+1} \), then for every \(i, j \) satisfying \(1 \leq i < j \leq l + 1 \), \(v_i \rightarrow v_{i+1} \rightarrow \cdots \rightarrow v_j \) is a shortest path from \(v_i \) to \(v_j \).

Proof: Suppose that this is not true. Then, we can find a shorter path to go from \(v_i \) to \(v_j \). Using this path to replace the original path from \(v_i \) to \(v_j \) yields a shorter path from \(v_1 \) to \(v_{l+1} \), which contradicts the fact that \(v_1 \rightarrow v_2 \rightarrow \cdots \rightarrow v_{l+1} \) is a shortest path.
Since $a \rightarrow b \rightarrow c \rightarrow d \rightarrow g \rightarrow f \rightarrow e$ is a shortest path, we know that any subsequence of this path is also a shortest path. For example, $b \rightarrow c \rightarrow d \rightarrow d \rightarrow g$ must be a shortest path from b to g.
Next, we will explain how to solve the SSSP problem when the input graph is a DAG.

Utilizing the subsequence property our algorithm will output a shortest path tree that encodes all the shortest paths from the source vertex s.
The Edge Relaxation Idea

For every vertex $v \in V$, we will maintain a value $dist(v)$ that is guaranteed to be an upper bound of the shortest path distance from s to v.

At the end of the algorithm, we will ensure that every $dist(v)$ equals the precise shortest path distance from s to v.

A core operation in our algorithm is called edge relaxation:

- Given an edge (u, v), we relax it as follows:
 - If $dist(v) < dist(u) + w(u, v)$, do nothing:
 - Otherwise, reduce $dist(v)$ to $dist(u) + w(u, v)$.
The Relaxation Lemma

Lemma: \(\text{dist}(v) \) is still an upper bound of the shortest path distance from \(s \) to \(v \) after the relaxation.

Proof: It suffices to prove that the shortest path from \(s \) to \(v \) cannot have a length greater than \(\text{dist}(u) + w(u, v) \).

The value of \(\text{dist}(u) \) indicates the existence of a path from \(s \) to \(u \) whose distance is at most \(\text{dist}(u) \). We can therefore go from \(s \) to \(v \) by first the path to go to \(u \), and then reach \(v \) by crossing the edge \((u, v)\). This gives a path from \(s \) to \(v \) whose distance is at most \(\text{dist}(u) + w(u, v) \). □
Obtain a topological order \(L \) on \(G \).

Set \(\text{dist}(s) = 0 \), and \(\text{dist}(v) = \infty \) for all other vertices \(v \in V \).

Set \(\text{parent}(v) = \text{nil} \) for all vertices \(v \in V \).

Remove all the vertices in \(L \) that are before \(s \).

Repeat the following until \(L \) is empty:

1. remove the first vertex \(u \) of \(L \)
2. for every outgoing edge \((u, v)\) of \(u \)
 1. if \(\text{dist}(v) > \text{dist}(u) + w(u, v) \) then
 set \(\text{dist}(v) = \text{dist}(u) + w(u, v) \) and \(\text{parent}(v) = u \).
Example

Suppose that the source vertex is c.

First, obtain an arbitrary topological order, e.g.,
$L = (a, b, c, h, d, g, i, f, e)$.

Initialize $\text{dist}(v)$ and $\text{parent}(v)$.

Remove all vertices before c in L, after which $L = (c, h, d, g, i, f, e)$.
Relax all the outgoing edges of c.

$L = (h, d, g, i, f, e)$.
Example

Relax all the outgoing edges of h.

$L = (d, g, i, f, e)$.
Example

Relax all the outgoing edges of \(d \).

\[
L = (g, i, f, e).
\]
Example

Relax all the outgoing edges of g.

$L = (i, f, e)$.
Example

Relax all the outgoing edges of i.

$L = (f, e)$.
Example

Relax all the outgoing edges of f.

$L = (e)$.
Example

Relax all the outgoing edges of e.

$L = ()$.
At this point, we have computed the shortest path distances from c to all the other vertices.
Constructing the Shortest Path Tree

For every vertex v, if $u = parent(v)$ is not nil, then make v a child of u.

![Graph diagram]

<table>
<thead>
<tr>
<th>vertex v</th>
<th>$parent(v)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>nil</td>
</tr>
<tr>
<td>b</td>
<td>nil</td>
</tr>
<tr>
<td>c</td>
<td>nil</td>
</tr>
<tr>
<td>d</td>
<td>c</td>
</tr>
<tr>
<td>e</td>
<td>nil</td>
</tr>
<tr>
<td>f</td>
<td>c</td>
</tr>
<tr>
<td>g</td>
<td>f</td>
</tr>
<tr>
<td>h</td>
<td>nil</td>
</tr>
<tr>
<td>i</td>
<td>g</td>
</tr>
</tbody>
</table>

![Shortest path tree diagram]
Time Analysis

Step 1 can be done in $O(|V| + |E|)$ time (DFS).
Steps 2-4 obviously take $O(|V|)$ time.

Regarding Step 5, notice that every outgoing edge is relaxed only once. Since each relaxation takes only $O(1)$ time, we know that Step 5 can be implemented in $O(|V| + |E|)$ time ($O(1)$ time spent removing each vertex from L).

Constructing the shortest path tree at the end obviously takes $O(|V|)$ time.

Overall the algorithm runs in $O(|V| + |E|)$ time (which is optimal).
We now prove that our algorithm is correct. In particular, we will prove that when the algorithm finishes, $\text{dist}(v)$ holds the correct shortest path distance from s to v.

Strictly speaking, we also need to prove that the fields of $\text{parent}(v)$ allow us to construct the shortest path tree correctly, but this is essentially a simple corollary of the above claim (and is left for you).
Correctness

Notice that $dist(v)$ will never change after v is removed from L (and has its out-going edges relaxed).

We will prove:

Lemma: When $dist(v)$ is removed from L, $dist(v)$ equals the shortest path distance from s to v.

The lemma is sufficient for establishing the correctness of our algorithm.
Correctness

Notice that $\text{dist}(v)$ will never change after v is removed from L (and has its out-going edges relaxed).

Proof:
Recall that at the beginning of the algorithm, we directly remove all the vertices v that precede s in L, leaving $\text{dist}(v) = 1$. This is correct because none of those vertices are reachable from s (by definition of topological order).

We will prove that the lemma also holds for the other vertices. We will do so by induction on the order that vertices are removed from L, starting from s.

Base Case: When s is removed, $\text{dist}(s) = 0$, as required by the lemma.
Proof (cont.):

Inductive Case: Suppose that we are removing \(v \) from \(L \), and that the lemma holds on all the vertices removed before \(v \). Let \(\pi \) be a shortest path from \(s \) to \(v \), and \(u \) the vertex on \(\pi \) immediately before \(v \). It thus follows that \(u \) must be before \(v \) in \(L \), and hence, must have been removed.

It follows that \(\text{dist}(u) \) must be the shortest path distance from \(s \) to \(u \). Thus, by relaxing edge \((u, v)\), the algorithm ensures that \(\text{dist}(v) \) cannot be higher than \(\text{dist}(u) + w(u, v) \), which is exactly the shortest path distance from \(s \) to \(v \).

Then the lemma follows from the fact that \(\text{dist}(v) \) always remains an upper bound of the shortest path distance (the relaxation lemma). \(\square \)
Next, we will extend the above algorithm to solve the SSSP problem when the input graph G is a general directed graphs (i.e., cycles may exist).

The major difference is the order that vertices are processed (recall that a cyclic graph has no topological orders).

The extended algorithm is called Dijkstra’s algorithm.
The Edge Relaxation Idea

Same idea as before!

For every vertex \(v \in V \), we will maintain a value \(\text{dist}(v) \) that is guaranteed to be an upper bound of the shortest path distance from \(s \) to \(v \). At the end of the algorithm, we will ensure that every \(\text{dist}(v) \) equals the precise shortest path distance from \(s \) to \(v \).

Edge relaxation: Given an edge \((u, v)\), we relax it as follows:

- If \(\text{dist}(v) < \text{dist}(u) + w(u, v) \), do nothing:
- Otherwise, reduce \(\text{dist}(v) \) to \(\text{dist}(u) + w(u, v) \).

The relaxation lemma still holds.
Dijkstra’s Algorithm

1. Set $\text{parent}(v) = \text{nil}$ for all vertices $v \in V$.
2. Set $\text{dist}(v) = 0$, and $\text{dist}(v) = \infty$ for all other vertices $v \in V$.
4. Repeat the following until S is empty:
 1. Remove from S the vertex u with the smallest $\text{dist}(u)$.
 /* next we relax all the outgoing edges of u */
 2. for every outgoing edge (u, v) of u
 1. if $\text{dist}(v) > \text{dist}(u) + w(u, v)$ then
 set $\text{dist}(v) = \text{dist}(u) + w(u, v)$ and $\text{parent}(v) = u$.

Example

Suppose that the source vertex is c.

$S = \{a, b, c, d, e, f, g, h, i\}$.
Example

Relax the out-going edges of \(c \) (because \(\text{dist}(c) \) is the smallest in \(S \)):

\[
S = \{ a, b, d, e, f, g, h, i \}.
\]

Note that \(c \) has been removed!
Example

Relax the out-going edges of d (because $\text{dist}(d)$ is the smallest in S):

$S = \{a, b, e, f, g, h, i\}$.
Example

Relax the out-going edges of g:

$S = \{a, b, e, f, h, i\}$.
Example

Relax the out-going edges of i:

$S = \{a, b, e, f, h\}$.
Example

Relax the out-going edges of f:

$S = \{a, b, e, h\}$.
Example

Relax the out-going edges of e:

$$S = \{ a, b, h \}.$$
Example

Relax the out-going edges of a:

$S = \{b, h\}$.
Example

Relax the out-going edges of b:

$$S = \{h\}.$$
Example

Relax the out-going edges of h:

\[
S = \emptyset .
\]

All the shortest path distances are now final.
Constructing the Shortest Path Tree

For every vertex v, if $u = parent(v)$ is not nil, then make v a child of u.
Correctness and Running Time

It will be left as an exercise for you to prove that Dijkstra’s algorithm is correct (by extending the correctness of our DAG algorithm).

Just as equally instructive is an exercise for you to implement Dijkstra’s algorithm in $O((|V| + |E|) \cdot \log|V|)$ time. You have already learned all the data structures for this purpose. Now it is the time to practice applying them.