BSTs have a height of $O(n)$ (for n nodes) in the worst case. So, we need to this affects efficiency of insertion, search & deletion operations. BSTs can be "balanced" so as to maintain a height of $O(\log n)$. One variant of a balanced tree is called an AVL tree (Adelson-Velskii and Landis). An AVL tree is defined as follows: an empty tree is an AVL tree. If T is a non-empty binary tree with T_L & T_R as left & right subtrees, then T is an AVL tree iff T_L & T_R are both AVL trees and $|\text{height}(T_L) - \text{height}(T_R)| \leq 1$.

For any n, the existence of an AVL tree is always guaranteed. Searching operation in an AVL tree is $O(\log n)$ in worst case. Insertion is also an $O(\log n)$ operation. Deletion also has the same time complexity.

When a new node is inserted into an AVL tree, it becomes unbalanced. A balancing operation needs to be then performed. This is also true for the deletion operation.
Convention: Associated with each node is a "balance factor" = height (left subtree) - height (right subtree).

The permissible balance factors are -1, 1 and 0. If the tree contains any node with a balance factor of 2 or more (or -2 or less), then it needs to be balanced.

eq: 20
 / \
 15 25
 / / \
12 18 30

eq: 20
 / \
 15 20
 / / \
12 18 30

are not AVL trees.

eq: 20
 / \ -2
 15 40
 / / \
12 20 43

is an AVL tree
In order to balance an AVL tree during insertion, several cases need to be considered.

A) Left Rotation: To be performed when the tree becomes right heavy.

Example: When 3 is inserted in the tree 1 2, the resulting tree is:

```
   2
  / 
 1   3
```

In such a case, we make 2 as the new root. 1 becomes the parent of the left child of 2 (null in this case) and the right child of 2 remains unchanged.

(If 2 had a non-null child before 3 was inserted, it would make the tree unbalanced.)

B) Right Rotation: For left-heavy trees.
In this case, \(2 \) becomes the new root.
\(3 \) becomes its right child and takes
parenthood of the former right child of
\(\), ie null.

\(\) Left-right rotation (LR rotation):

Consider the tree

Now when \(2 \) is inserted, we get:

A single left rotation will yield us:

Which is unbalanced.

So we need to do a two-step rotation. First, we will do a right rotation on the right subtree ie \(2 \) yielding:

Which is of course unbalanced.

\(\) may take custody of the
left child of \(2 \).