Algorithm to find out all shortest paths from source vertex 's' to a dest. vertex 't' in an unweighted graph.

for each \(v \in V \), \{ \(\text{dist}(v) = \infty \); \(\text{paths}(v) = " " \); \(\text{numpaths}(v) = 0 \); \(\text{visited}(v) = \text{NO} \); \}

\(\text{numpaths} = \) array containing the number of shortest paths

\(\text{dist}(s) = 0 \); \(\text{visited}(s) = \text{VISITED} \);

add\(Q(s) \);

while (!empty \(Q() \))

\(\{ \)

\(w = \) delete\(Q() \);

for (each neighbor \(x \) of \(w \))

\(\{ \)

\(\text{if} (\text{visited}(x) = = \text{NO}) \)

\(\{ \)

\(\text{dist}(x) = \text{dist}(w) + 1 \);

\(\text{numpaths}(x) = \text{numpaths}(w) + 1 \);

\(\text{paths}(\text{numpaths}(x)) = [\text{paths}(w), x] \);

\(\text{visited}(x) = \text{YES} \);

add\(Q(x) \);

\(\} \)

\(\} \)

else

\(\{ \)

\(\text{if} (\frac{\text{dist}(w) + 1}{\text{dist}(x)} \)