MINIMUM SPANNING TREES

Consider a graph $G = (V, E)$. A spanning subgraph of G is a graph of the form $G' = (V, E')$ where $E' \subseteq E$. It may or may not be a connected graph. If the subgraph is a tree, then it is called a spanning tree.

If G is a weighted graph, there are applications that require the computation of a spanning tree with minimum cost (i.e., total weight of all edges). Such a tree is called a minimum spanning tree.

In fact, one can prove that a minimum connected spanning subgraph of G must be a tree.

(Do you see why? Prove it.)

Algorithms to Compute MST:

1. **Kruskal's algorithm** for graph $G = (V, E)$:
 - Insert edges from E into the tree in increasing order of cost as long as no cycle is introduced.
 - Keep doing so until there is any vertex in V which is not included in the tree.
Kruskal's algorithm:

Notice that Kruskal's algorithm may not yield a tree during intermediate steps (of course, it yields a tree in the last step).

Time complexity of naive implementation — finding min cost edge (not included in the tree as yet) is $O(V^2 + VE)$. Suppose
Kruskal's algorithm.

Consider a graph $G = (V, E)$. We want to create MST $T = (V_T, E_T)$.

Initialize E_T to \emptyset, $V_T = \emptyset$.

While ($V_T \neq V$)
{
- Pick the least cost edge e in $E - E_T$.
- $E_T = E_T \cup \{e\}$ if e does not introduce a cycle. In this case $V_T = V_T \cup \{u_1, u_2\}$ where u_1 and u_2 are the endpoints of e.
}

Thus Kruskal's algorithm does not maintain a connected graph at all stages unlike Prim's algorithm. Rather it constructs the tree starting from connected components. Each time a new edge is selected, it could either be a new connected component in its own cycle, or it could be a bridge between two connected components. If e induces a cycle, it means that its endpoints were part of the same connected component (otherwise it cannot induce a cycle).
So we need a data structure to
1) identify efficiently the label of a connected component to which a certain vertex belongs
2) merge two connected components into one.

The first operation is called FIND. The second one is called as UNION. To implement Kruskal's algorithm efficiently, we need a special data structure to handle such operations. It is called the Union-Find data structure.

Consider $G = (V, E)$. We will maintain an array called "Component" where $Component[v]$ contains the connected component to which vertex 'v' belongs. The "FIND(v)" operation, i.e., to find the connected component to which v belongs, now takes $O(1)$ time.

But finding the union of two components, i.e., finding $\text{Union}(S_1, S_2)$ where S_1 & S_2
are two connected components. To perform this operation we can retain the values of Component $[V]$ if $V \in S_1$ (where $|S_1| \gg |S_2|$) and change the values of Component $[W]$ (where $W \in S_2$) to Component $[V]$ (where V is an arbitrary vertex in S_1). The worst case complexity of this operation is still $O(N)$ (though it can be shown that a sequence of k Union operations will take no more than $O(k \log k)$ time).

If we use this data structure exactly as is for implementing Kruskal's algorithm, the total time complexity will be

$$O(E \log |E| + 1 + 1) + O(V \log V)$$

\[\downarrow\]

$$\downarrow$$

to extract min edge

to check the component labels for a sequence of V "union" operations.

\[\downarrow\]

\[\downarrow\]

$= O(E \log E)$

$= O(E \log V)$
Claim: Even though a single union operation takes \(O(1\text{vw}) \) time in the worst case, a sequence of \(k \) union operations takes at most \(O(k \log k) \) time. In other words, the worst case doesn't occur too often.

Proof:
The bulk of the time in any union operation is spent in updating the "Component" array. Initially, every vertex of the graph \(G = (V, E) \) will be in its own connected component. A single union operation combines two single-element connected components into one. Hence after \(k \) union operations, only \(2k \) elements in \(V \) are affected. In any union operation that affects Component \([v]\), the size of the set containing \(v \) at least doubles (remember: the union uses the label \(v \) from Component value of the larger set). In \(k \) union operations, the maximum size it can reach is \(2k \). So, Component \([v]\) will get updated at most \(\log_2(2k) \) times. So the total time is \(O(k \log k) \).
as at most 2k elements are involved in any union operation.

Reverse delete algorithm

This is a relatively lesser known but very intuitive MST algorithm. In this method, you detect a cycle in the graph and delete the heaviest edge in it. As you are deleting an edge from the cycle, you are guaranteed not to disconnect the graph.

eg:
Another variant: Delete the heaviest edge that will not disconnect the graph.
Prim's algorithm:

It maintains two sets of vertices S and $V-S$ (both disjoint sets). Initially, an arbitrary vertex is entered into S. The set S is grown by adding in a new vertex V such that $V \notin S$ (currently), edge UV is the least cost edge (which does not include a cycle in the tree) amongst all $U \in S$.

$S = \{v_1\}$

$S = \{v_1, v_4\}$

$S = \{v_1, v_4, v_2\}$

$S = \{v_1, v_4, v_2, v_3\}$

$S = \{v_1, v_4, v_2, v_3, v_7\}$
$S = \{ V_1, V_4, V_2, V_3, V_7, V_6 \}$

$S = \{ V_1, V_4, V_2, V_3, V_7, V_6, V_5 \}$

Complexity: We maintain a heap of the edges based on edge cost. The total time taken to build the heap is $O(1E1)$. Each time we delete the min-cost edge from the heap, we need to check whether it will create a cycle in the tree. If so, we simply discard it and readjust the heap. Otherwise, we include it in the tree, re-adjust the heap, and proceed exactly as before. The total time taken will be $O(1E1 \log 1E1) = O(1E1 \log 1N1)$.