1 Groups

A large number of sets endowed with a binary operation have properties like the set of integers with addition. These systems are called groups defined as follows:

Groups:
A group is a set G, together with a binary operation \ast, satisfying the following properties:

1. G is closed under \ast, i.e for all $a, b \in G$, $a \ast b = c \in G$.

2. \ast is associative, i.e for all $a, b, c \in G$, we have
 $$(a \ast b) \ast c = a \ast (b \ast c)$$

3. G has a \ast identity element i.e $\exists e \in G$ such that for all $a \in G$
 $$a \ast e = e \ast a = a$$

4. Every element in G has its \ast inverse i.e for all $a \in G$, $\exists b \in G$ such that
 $$a \ast b = b \ast a = e$$
 b is called the \ast inverse of a, denoted as, a^{-1}.

Note: Often $a \ast b$ is written as ab. This should not be confused with ordinary multiplication in numbers.

Examples:

• $\text{Eg.1 } \langle \mathbb{Z}, + \rangle$
• $\text{Eg.2 } \langle \mathbb{Q}, + \rangle$
• $\text{Eg.3 } \langle \mathbb{Q}^*, \times \rangle$, where $\mathbb{Q}^* = \mathbb{Q} - \{0\}$
• $\text{Eg.4 } G = \{a + b\sqrt{2}, a, b \in \mathbb{Q}\}$

$\langle G, + \rangle$ is a group.

$\langle G^*, \times \rangle$ where $G^* = G - \{0\}$?

Existence of $(a + b\sqrt{2})^{-1}$ if $a^2 = 2b^2$?
Such elements are not in G.
So it is a group.
- $Eg.5 \langle \mathbb{C}, + \rangle$ and $\langle \mathbb{C}^*, \times \rangle$ are groups.

- $Eg.6$ Set of all $n \times n$ real invertible matrices forms a group under the operation of matrix multiplication.

This group is called the general linear group of order n, denoted as $GL_n(\mathbb{R})$. Similarly $GL_n(\mathbb{C})$ is a group.

- $Eg.8$

$\mathbb{Z}_4 = \{0, 1, 2, 3\}$.

The binary operation is addition modulo 4.

$$a \oplus b = a + b \mod 4.$$

By definition, \mathbb{Z}_4 is closed under \oplus.

$$1 \oplus 2 = 3, \quad 1 \oplus 3 = 0, \quad 2 \oplus 3 = 1, \quad 3 \oplus 3 = 2, \quad 2 \oplus 2 = 0, \quad \ldots.$$

0 is the identity. 1 and 3 are inverses of each other. 2 is its own inverse.

For groups containing a small number of elements, a group table is a convenient way to specify the group completely.

We construct the group table of \mathbb{Z}_4

$$
\begin{array}{c|cccc}
\oplus & 0 & 1 & 2 & 3 \\
\hline
0 & 0 & 1 & 2 & 3 \\
1 & 1 & 2 & 3 & 0 \\
2 & 2 & 3 & 0 & 1 \\
3 & 3 & 0 & 1 & 2
\end{array}
$$

- $Eg.9$

The Klein 4 group (K_4)

The group table of $K_4 = \{e, a, b, c\}$ is

$$
\begin{array}{c|cccc}
& e & a & b & c \\
\hline
e & e & a & b & c \\
a & a & e & c & b \\
b & b & c & e & a \\
c & c & b & a & e
\end{array}
$$
The group table of any group with 4 elements either is similar to \mathbb{Z}_4 or to that of K_4 (exercise).

- **Def. Abellian Group:**
 If $ab = ba \ \forall \ a, b \in G$ then G is an abellian group.
 All the examples given above except eg.6, the group of matrices, and eg.7 are abellian groups.

For e.g. in D_6, $F_3F_2 = R_{120}$ whereas $F_2F_3 = R_{240}$

- **Lemma 1:**
 If $\langle G, * \rangle$ be a group. then we have the following

 (i) The identity element in $\langle G, * \rangle$ is unique.
 (ii) Every $a \in G$ has a unique inverse.
 (iii) $\forall a \in G, \ (a^{-1})^{-1} = a$.
 (iv) $\forall a, b \in G, \ (ab)^{-1} = b^{-1}a^{-1}$.

 Proof: (i) Let if possible e and e' be two distinct identities.

 Then $e \ast e' = e' \ast e = e'$, since e is an identity
 Also $e \ast e' = e' \ast e = e$, since e' is an identity
 $\implies e = e'$.

- **Lemma 2:**
 Let $a, b \in G$. Then there exist a unique solution to $a \ast x = b$ and $y \ast a = b$ in G.

 Also $\forall \ a, x, y \in G$

 \[
 a \ast x = a \ast y \implies x = y \quad \text{left cancelation law}
 \]

 \[
 \text{and} \quad x \ast a = y \ast a \implies x = y \quad \text{right cancelation law}
 \]

- **Lemma 2** ensures that every row and every column of the group table contains each element of the group exactly once.

- **Def. Order of a group:**
 The number of elements in a finite group G is called the order of the group, denoted as $o(G)$.

- **Notation:** $a \ast a \ast \ldots \ast a (i \text{ times}) = a^i$

 \[
 (a^i)^{-1} = (a^{-1} \ast a^{-1} \ast \ldots \ast a^{-1}) = (a^{-1})^i \text{ denoted as } a^{-i}
 \]

 With this notation we can write $a^i \ast (a^j)^{-1} = a^{i-j}$
2 Subgroups

Def. Subgroup:
Let \(\langle G, * \rangle \) be a group. A non-empty subset \(H \) of \(G \) is called a subgroup of \(G \) if \(\langle H, * \rangle \) is a group.

- \(2\mathbb{Z} = \{ ..., -6, -4, -2, 0, 2, 4, 6, ... \} = \{ 2k | k \in \mathbb{Z} \} \)
 \(\langle 2\mathbb{Z}, + \rangle \) is a subgroup of \(\langle \mathbb{Z}, + \rangle \)

- \(\langle \mathbb{Z}, + \rangle \) is a subgroup of \(\langle \mathbb{R}, + \rangle \) is a subgroup of \(\langle \mathbb{C}, + \rangle \).

- Let \(M \) be the set of real \(2 \times 2 \) matrices with determinant =1. Then \(M \) is a subgroup of \(GL_2(\mathbb{R}) \).

- **Lemma 3:** A non-empty subset \(H \) of a group \(\langle G, * \rangle \) is a subgroup of \(G \) if and only if
 (i) \(H \) is closed under \(* \).
 (ii) \(a \in H \implies a^{-1} \in H \).

 Eg: Let \(n \in \mathbb{Z} \) and consider the set \(n\mathbb{Z} \).

 Let \(nk_1, nk_2 \in n\mathbb{Z} \) where \(k_1, k_2 \in \mathbb{Z} \).

 Then \(nk_1 + nk_2 = n(k_1 + k_2) \in n\mathbb{Z} \) since \(\mathbb{Z} \) is closed under addition.

 So \(n\mathbb{Z} \) is closed under addition.

 For any \(nk \in n\mathbb{Z} \), \(n(-k) \in n\mathbb{Z} \), which is its additive inverse.

 So by Lemma 3 \(\langle n\mathbb{Z}, + \rangle \) is a subgroup of \(\langle \mathbb{Z}, + \rangle \).

- **Lemma 4:** If \(H \) is a non-empty finite subset of a group \(\langle G, * \rangle \), and \(H \) is closed under \(* \) then \(H \) is a subgroup of \(G \).

 Proof:
 Since \(H \) is non-empty, \(\exists a \in H \). Since \(H \) is closed under *, \(a, a^2, ... \in H \).

 But \(H \) is finite. So \(\exists r, p \in \mathbb{Z}, p > r \) such that \(a^p = a^r \implies a^{p-r} = e \in H \).

 So \(e \in H \).

 Now \(a^{(p-r)-1} \ast a = a \ast a^{(p-r)-1} = a^{p-r} = e \).
So \(a^{(\mu-r)_{-1}} = a^{-1} \).

Hence \(\forall a \in H, \ a^{-1} \in H \). By Lemma 3, \(H \) is a subgroup of \(G \).