Dhirubhai Ambani Institute of Information and Communication Technology (DA-IICT)
Mid-semester Examination
CT314 (Statistical Communication Theory)
Date of Examination: March 24, 2017
Duration: 2 Hours
Maximum Marks: 25

Instructions:
1. Attempt all questions.
2. Use of scientific non programmable calculator is permitted.
3. Figures in brackets indicate full marks.
4. All the acronyms carry their usual meaning.

Q1: Let X and Y be two random variables with \(Y = cX + d \), where \(c \), \(d \) are constants. Find the correlation coefficient between X and Y. (2)

Q2: Consider a vector of random variables \(X = [X_1, X_2]^T \). These random variables have unit variance and are uncorrelated. Now the transformed vector \(Y = AX \), where \(A \) is the transformation matrix. Find the matrix \(A \) so that \(Y \) has the covariance matrix \(C_Y = \begin{bmatrix} 1 & 0.5 \\ 0.5 & 1 \end{bmatrix} \) (8)

Q3: Let \(X_1 \), \(X_2 \), and \(X_3 \) be the zero mean random variables having same variance. We wish to predict \(X_3 \) as \(aX_1 + bX_2 \), \(a \) and \(b \) are constants. (a) Find the MMSE estimate of \(X_3 \). Now assuming that covariance does not depend on the specific index of random variables, but rather on the distance between them [meaning \(COV(X_1, X_2) = COV(X_2, X_3) \)], express \(a \) and \(b \) in terms of correlation coefficients. (7)

Q4: Consider jointly Gaussian random variables \(X_1 \) and \(X_2 \) with mean vector \(m_x \) and covariance matrix \(C_X \). Now define \(Y = AX \) to get \(Y_1 \) and \(Y_2 \), where \(A \) is a invertible matrix. (a) Show that \(Y \) is jointly Gaussian (b) Write the mean vector and covariance matrix for the vector \(Y \). (c) Now choose \(A \) to make \(Y \) as statistically independent (d) Reason out why \(A \) has to be invertible. (8)

"BEST WISHES"
1. \(y = cx + d \)

\[\text{Cov}(x,y) = E\left[(x-m_x)(y-m_y) \right] \]

\(y = cx + d \) so \(m_y = cE(x) + d = cm_x + d \)

\(y - m_y = c(x - m_x) \)

\[\text{Cov}(x,y) = E\left[(x-m_x)(y-m_y) \right] = E \left[c(x-m_x)^2 \right] = c \sigma_x^2 \]

\[\sigma_y^2 = E(y - m_y)^2 = c^2 \sigma_x^2 \]

\[p_{xy} = \frac{c \sigma_x^2}{\sigma_x \sigma_x} = 1 \]

2. \(C_y = \begin{bmatrix} 1 & 1.5 \\ 1.5 & 1 \end{bmatrix} \)

Eigen vectors \(U = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \)

\(\Sigma = \begin{bmatrix} \frac{1}{2} & 0 \\ 0 & \frac{1}{2} \end{bmatrix} \)

\(A = U \Sigma U^T \)

Verify \(C_y = A A^T \)

3. \(x_3 = a x_1 + b x_2 \)

Minimize \(E \left(x_3 - \hat{x}_3 \right)^2 \)

Differentiate \(a \) and \(b \) and equate to 0.
we set
\[
\begin{bmatrix}
E(X_1) & E(X_1 X_2) \\
E(X_1 X_2) & E(X_2)
\end{bmatrix}
\begin{bmatrix}
a \\
b
\end{bmatrix} = \frac{\begin{bmatrix}
E(X_1 X_3) \\
E(X_2 X_3)
\end{bmatrix}}{egin{bmatrix}
\sigma_{X_1}^2 \\
\sigma_{X_2}^2
\end{bmatrix}}
\]

So solving these two equations,
\[
a = \sqrt{\frac{\sigma_{X_1}^2}{\sigma_{X_2}^2}} \left(\text{Cov}(X_1, X_3) - \text{Cov}(X_1 X_2) \text{Cov}(X_2, X_3) \right)
\]
\[
b = \frac{\sigma_{X_1}^2}{\sigma_{X_2}^2} \left(\text{Cov}(X_2, X_3) - \text{Cov}(X_1 X_2) \text{Cov}(X_1, X_3) \right)
\]

New given:
\[
\text{Cov}(X_1 X_2) = \text{Cov}(X_1 X_3)
\]
\[
p_1 \sigma_{X_1}^2 = p_2 \sigma_{X_2}^2
\]

\[
a = \frac{\sigma_{X_1}^2}{\sigma_{X_2}^2} \left(p_2 - p_1 \right)
\]
\[
b = \frac{\sigma_{X_1}^2}{\sigma_{X_2}^2} \left(1 - p_1^2 \right)
\]

So verify
\[
a = \frac{p_2 - p_1}{1 - p_1^2}
\]
\[
b = \frac{p_1(1 - p_2)}{1 - p_1^2}
\]
\[Y = AX \]

\[
\begin{bmatrix}
Y_1 \\
Y_2
\end{bmatrix} =
\begin{bmatrix}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2
\end{bmatrix}
\]

\[f_{y_1, y_2}(y_1, y_2) = \frac{f_{x_1, x_2}(x_1, x_2)}{|J(\frac{y_1, y_2}{x_1, x_2})|} \]

\[|J| = \begin{vmatrix}
\frac{\partial y_1}{\partial x_1} & \frac{\partial y_1}{\partial x_2} \\
\frac{\partial y_2}{\partial x_1} & \frac{\partial y_2}{\partial x_2}
\end{vmatrix} = \begin{vmatrix}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{vmatrix} = \mathbf{det}(A)
\]

\[f_{x_1, x_2}(x_1, x_2) = -\frac{1}{2} (x - m_x)^T C_x^{-1} (x - m_x) \]

\[f_{x_1 x_2}(x_1, x_2) = \frac{1}{2\pi} \mathbf{det}(A) \frac{1}{\sqrt{C_x}} \]

\[AX = Y \]

\[N \cdot (A^{-1} y - m_x) = A^{-1} (y - A m_x) = (A^{-1} y - m_x)^T A^{-1} (y - A m_x) = \frac{1}{2} (y - m_y)^T (A^{-1})^T C_y A^{-1} (y - m_y) \]

\[e^{-\frac{1}{2} (y - m_y)^T C_y^{-1} (y - m_y)} \]

\[(2\pi)^{-\frac{1}{2}} \mathbf{det}(C_y)^{-\frac{1}{2}} \]

Covariance matrix \(Y \)

\[C_y = (A C_x A^T)^{-1} \]

\[\det(C_y) = \mathbf{det}(A)^{-2} \mathbf{det}(C_x) \]

\[(AC_y A^T)^{-1} \]

\[e^{-\frac{1}{2} (y - m_y)^T C_y^{-1} (y - m_y)} \]

\[(2\pi)^{-\frac{1}{2}} \mathbf{det}(C_y)^{-\frac{1}{2}} \]

\[\text{represents joint pdf of } y_1 \text{ and } y_2 \]

\[\text{which is jointly Gaussian pdf} \]
For y_1 and y_2 to be independent, they have to be uncorrelated for Gaussian case.

So \[y = A x \]

... A is chosen as

\[A \perp U \text{ i.e., eigenvector matrix} \]

\[C_x \] (Covariance matrix y_x)

Then y_1 and y_2 are uncorrelated, hence independent.

(c) $y A$ is not invertible, determinant f^j Jacobian matrix becomes 0. So joint pdf cannot be determined, i.e., f_{y_1, y_2}