Reconstruction of Sparse Signals by Minimizing a Re-Weighted Approximate ℓ_0-Norm in the Null Space of the Measurement Matrix

J. K. Pant, W.-S. Lu, and A. Antoniou

University of Victoria

August 3, 2010
Compresive Sensing
Compressive Sensing

Signal Recovery by ℓ_1 Minimization
Compressive Sensing

Signal Recovery by ℓ_1 Minimization

Signal Recovery by ℓ_p Minimization with $p < 1$
Outline

- Compressive Sensing
- Signal Recovery by ℓ_1 Minimization
- Signal Recovery by ℓ_p Minimization with $p < 1$
- Performance Evaluation
A signal $x(n)$ of length N is K-sparse if it contains K nonzero components with $K \ll N$.
A signal $x(n)$ of length N is K-sparse if it contains K nonzero components with $K \ll N$.

A signal is near K-sparse if it contains K significant components.
Sparsity is a generic property of signals: A real-world signal always has a sparse or near-sparse representation with respect to an appropriate basis.
Sparsity is a generic property of signals: A real-world signal always has a sparse or near-sparse representation with respect to an appropriate basis.

An Image

An equivalent 1-D signal

A wavelet representation of the image
Compressive sensing (CS) is a data acquisition process whereby a sparse signal $x(n)$ represented by a vector x of length N is determined using a small number of projections represented by a matrix Φ of dimension $M \times N$.

$$y = \Phi \cdot x$$
Compressive sensing (CS) is a data acquisition process whereby a sparse signal $x(n)$ represented by a vector x of length N is determined using a small number of projections represented by a matrix Φ of dimension $M \times N$.

In such a process, measurement vector y and signal vector x are interrelated by the equation $y = \Phi \cdot x$.

\[
\begin{bmatrix}
\text{measurements} \\
\end{bmatrix}_{M \times 1} =
\begin{bmatrix}
\text{projection matrix} \\
\end{bmatrix}_{M \times N}
\begin{bmatrix}
\text{sparse signal of interest} \\
\end{bmatrix}_{N \times 1}
\]
CS theory shows that these random projections contain much, sometimes all, the information content of signal x.

A condition for this to be possible is

$$M \geq c \cdot K \cdot \log \left(\frac{N}{K} \right)$$

where c is a small constant.
Compressive Sensing, cont’d

- CS theory shows that these random projections contain much, sometimes all, the information content of signal \(x \).

- If a sufficient number of such measurements are collected, recovering signal \(x \) from measurements \(y \) is possible.

\[M \geq c \cdot K \cdot \log \left(\frac{N}{K} \right) \]

where \(c \) is a small constant.
CS theory shows that these random projections contain much, sometimes all, the information content of signal \mathbf{x}.

If a sufficient number of such measurements are collected, recovering signal \mathbf{x} from measurements \mathbf{y} is possible.

A condition for this to be possible is

$$M \geq c \cdot K \cdot \log\left(\frac{N}{K}\right)$$

where c is a small constant.
CS theory shows that these random projections contain much, sometimes all, the information content of signal \(\mathbf{x} \).

If a sufficient number of such measurements are collected, recovering signal \(\mathbf{x} \) from measurements \(\mathbf{y} \) is possible.

A condition for this to be possible is

\[
M \geq c \cdot K \cdot \log(N/K)
\]

where \(c \) is a small constant.

Typically,

\[
K < M < N
\]
Recovering signal vector \mathbf{x} from measurement vector \mathbf{y} such that

$$
\Phi_{M \times N} \cdot \mathbf{x}_{N \times 1} = \mathbf{y}_{M \times 1}
$$

is an ill-posed problem.
Signal Recovery by ℓ_1 Minimization

- Recovering signal vector x from measurement vector y such that

$$\Phi \cdot x = y$$

is an ill-posed problem.

- Given that x is sparse, x can be reconstructed by solving the ℓ_1-minimization problem

$$\min_{x} \quad \|x\|_1$$

subject to

$$\Phi x = y$$

where $\|x\|_1 = \sum_{i=1}^{N} |x_i|$.
Why l_1-norm minimization?
Why ℓ_1-norm minimization?

As c increases, the contour of $||x||_1 = c$ grows and touches the hyperplane $\Phi x = y$, yielding a sparse solution

$$x^* = \begin{bmatrix} 0 \\ c \end{bmatrix}$$

Contours for $||x||_1 = c$
Why ℓ_2-norm minimization fails to work?
Why ℓ_2-norm minimization fails to work?

As r increases, the contour of $\|x\|_2 = r$ grows and touches the hyperplane $\Phi x = y$.

The solution x^* obtained is not sparse.
Theorem

If $\Phi = \{\phi_{ij}\}$ where ϕ_{ij} are independent and identically distributed random variables with zero-mean and variance $1/N$ and $M \geq cK \log(N/K)$, the solution of the ℓ_1-minimization problem would recover exactly a K-sparse signal with high probability.
Theorem

If $\Phi = \{\phi_{ij}\}$ where ϕ_{ij} are independent and identically distributed random variables with zero-mean and variance $1/N$ and $M \geq cK \log(N/K)$, the solution of the ℓ_1-minimization problem would recover exactly a K-sparse signal with high probability.

- For real-valued data $\{\Phi, y\}$, the ℓ_1-minimization problem is a linear programming problem.
Signal Recovery by ℓ_1 Minimization, cont’d

Example: $N = 512$, $M = 120$, $K = 26$
Example: \(N = 512, M = 120, K = 26 \)
The sparsity of a signal can be measured by using its ℓ_0 pseudonorm

$$||x||_0 = \sum_{i=1}^{N} |x_i|^0$$
The sparsity of a signal can be measured by using its ℓ_0 pseudonorm

$$||x||_0 = \sum_{i=1}^{N} |x_i|^0$$

Hence the sparsest solution of $\Phi x = y$ can be obtained by solving the ℓ_0-norm minimization problem

$$\text{minimize}_{x} ||x||_0 \quad \text{subject to} \quad \Phi x = y$$
The sparsity of a signal can be measured by using its ℓ_0 pseudonorm

$$\|x\|_0 = \sum_{i=1}^{N} |x_i|^0$$

Hence the sparsest solution of $\Phi x = y$ can be obtained by solving the ℓ_0-norm minimization problem

$$\min_{x} \|x\|_0$$
subject to $\Phi x = y$

Unfortunately, the ℓ_0-norm minimization problem is nonconvex with combinatorial complexity.
An effective signal recovery strategy is to solve the ℓ_p-minimization problem

$$\min_{x} ||x||_p^p \quad \text{with} \quad 0 < p < 1$$

subject to

$$\Phi x = y$$

where $||x||_p^p = \sum_{i=1}^{N} |x_i|^p$.

The ℓ_p-norm minimization problem is nonconvex.
An effective signal recovery strategy is to solve the ℓ_p-minimization problem

$$\min_{x} \|x\|_p^p \quad \text{with} \quad 0 < p < 1$$

subject to

$$\Phi x = y$$

where $\|x\|_p^p = \sum_{i=1}^{N} |x_i|^p$.

The ℓ_p-norm minimization problem is nonconvex.
Contours of $||x||_p = 1$ with $p < 1$
Why ℓ_p minimization with $p < 1$?

As c increases, the contour $||x||_p = c$ grows and touches the hyperplane $\Phi x = y$, yielding a sparse solution $x^* = [0 \ldots c]$. The possibility that the contour will touch the hyperplane at another point is eliminated.
Why ℓ_p minimization with $p < 1$?

As c increases, the contour $\|x\|_p^p = c$ grows and touches the hyperplane $\Phi x = y$, yielding a sparse solution $x^* = \begin{bmatrix} 0 \\ c \end{bmatrix}$.

The possibility that the contour will touch the hyperplane at another point is eliminated.

Contours of $\|x\|_p^p = c$ with $p < 1$
We propose to minimize an approximate \(\ell_0 \)-norm

\[
\| x \|_{0, \sigma} = \sum_{i=1}^{N} \left(1 - e^{-x_i^2/2\sigma^2} \right)
\]

where \(x \) lies in the solution space of \(\Phi x = y \), namely,

\[
x = x_s + V_r \xi
\]

where \(x_s \) is a solution of \(\Phi x = y \) and \(V_r \) is an orthonormal basis of the null space of \(\Phi \).
Why norm $||x||_{0,\sigma}$ works?

With σ small,

\[
\left| \left(1 - e^{-x^2_i/2\sigma^2} \right) x_i = 0 \right| \approx 0
\]
and

\[
\left| \left(1 - e^{-x^2_i/2\sigma^2} \right) x_i \neq 0 \right| \approx 1
\]

Therefore, for a K-sparse signal,

\[
||x||_{0,\sigma} = N \sum_{i=1}^{K} \left| \left(1 - e^{-x^2_i/2\sigma^2} \right) x_i \right| \approx K = ||x||_0
\]
Why norm $||x||_{0,\sigma}$ works?

With σ small,

$$\left(1 - e^{-x_i^2/2\sigma^2}\right) \bigg|_{x_i=0} = 0$$

and

$$\left(1 - e^{-x_i^2/2\sigma^2}\right) \bigg|_{x_i \neq 0} \approx 1$$
Why norm $\|x\|_{0, \sigma}$ works?

With σ small,

$$
\left(1 - e^{-x_i^2/2\sigma^2}\right) \bigg|_{x_i=0} = 0
$$

and

$$
\left(1 - e^{-x_i^2/2\sigma^2}\right) \bigg|_{x_i \neq 0} \approx 1
$$

Therefore, for a K-sparse signal,

$$
\|x\|_{0, \sigma} = \sum_{i=1}^{N} \left(1 - e^{-x_i^2/2\sigma^2}\right) \approx K = \|x\|_0
$$
Improved recovery rate can be achieved by using a re-weighting technique.

\[
\min_{\mathbf{x}} \sum_{i=1}^{n} w_i \left\{ \frac{1}{2} \left(\frac{x_s(i) + v_i^T \xi}{\sigma^2} \right)^2 \right\}
\]

where \(w_i(k+1) = 1 |x(i)(k)| + \epsilon\).
Improved recovery rate can be achieved by using a re-weighting technique.

This involves solving the optimization problem

\[
\min_{\xi} \sum_{i=1}^{n} w_i \left\{ 1 - e^{-\left[x_s(i) + v_i^T \xi\right]^2/2\sigma^2} \right\}
\]

where

\[
w_i^{(k+1)} = \frac{1}{|x_i^{(k)}| + \epsilon}
\]
Performance Evaluation

Number of perfectly recovered instances versus sparsity K by various algorithms with $N = 256$ and $M = 100$ over 100 runs.

IR: Iterative re-weighting (Chartrand and Yin, 2008)
SL0: Smoothed ℓ_0-norm minimization (Mohimani et. al., 2009)
NRAL0: Proposed
Average CPU time versus signal length for various algorithms with $M = N/2$ and $K = M/2.5$.

IR: Iterative re-weighting (Chartrand and Yin, 2008)
SL0: Smoothed ℓ_0-norm minimization (Mohimani et. al., 2009)
NRAL0: Proposed
Performance comparison of ℓ_1 minimization with approximate ℓ_0 minimization for $N = 512$, $M = 80$, $K = 30$.

![Graphs comparing original signal with recovery by ℓ_1 and ℓ_0 minimization, showing reconstruction error.](image)
Conclusions

- Compressive sensing is an effective technique for signal sampling.
Conclusions

- Compressive sensing is an effective technique for signal sampling.
- ℓ_1 minimization works in general for the reconstruction of sparse signals.
Compressive sensing is an effective technique for signal sampling.

- ℓ_1 minimization works in general for the reconstruction of sparse signals.

- ℓ_p minimization with $p < 1$ can improve the recovery performance for signals that are less sparse.
Compressive sensing is an effective technique for signal sampling.

- ℓ_1 minimization works in general for the reconstruction of sparse signals.

- ℓ_p minimization with $p < 1$ can improve the recovery performance for signals that are less sparse.

- Approximate ℓ_0-norm minimization offers good performance with improved complexity.
Thank you for your attention.