1. Consider a function \(x(t) \) defined for \(t \in (-\infty, \infty) \) as follows.

\[
x(t) = \begin{cases}
0 & : -\infty < t < 0 \\
1 - t & : 0 \leq t \leq 1 \\
0 & : 1 < t < \infty
\end{cases}
\]

(a) Sketch this function with appropriate labels for the axes. Next, give a sketch of functions \(x(-t) \), \(x(-t - 0.5) \), and \(x(-t + 0.5) \).

(b) Define new functions \(u(t) := x(-t) \), \(v(t) := x(t - 0.5) \), \(w(t) := u(t - 0.5) \), and \(z(t) := v(-t) \). Give sketches of \(w(t) \) and \(z(t) \).

Remark: \(v(t) \) is a time-translate of \(x(t) \), and \(u(t) \) is a time-reversed version of \(x(t) \). Further, \(w(t) \) is obtained by first doing a time-reversal on \(x(t) \) and then doing time-translation. On the other hand, \(z(t) \) is obtained by first doing time-translation and then time-reversal. Compare the effects.

2. A function \(x : \mathbb{R} \to \mathbb{R} \) is said to be **even** if \(x(-t) = x(t) \) for every \(t \in \mathbb{R} \). It is said to be **odd** if instead \(x(-t) = -x(t) \) for every \(t \in \mathbb{R} \). Check whether the following are odd or even, or neither.

\[
(1) \quad x_e(t) = \frac{1}{2}(x(t) + x(-t)) \\
(2) \quad x_o(t) = \frac{1}{2}(x(t) - x(-t))
\]

3. A square wave voltage is applied to a series connection of a resistor and a capacitor. Sketch the waveforms of the steady-state periodic voltages developing across the resistor and capacitor. Can this circuit be used as a simple filter? What type. Give your views.