Compiler Design

IT 423

Lecture - 10

Dr. Manish Khare
DAIICT, Gandhinagar
There are two main categories of shift-reduce parsers

1. **Operator-Precedence Parser**
 - simple, but only a small class of grammars.

2. **LR-Parsers**
 - covers wide range of grammars.
 - SLR – simple LR parser
 - Canonical LR – most general LR parser
 - LALR – intermediate LR parser (lookahead LR parser)
 - SLR, Canonical LR and LALR work same, only their parsing tables are different.
Operator-Precedence Parser

- **Operator grammar**
 - small, but an important class of grammars
 - we may have an efficient operator precedence parser (a shift-reduce parser) for an operator grammar.

- In an *operator grammar*, no production rule can have:
 - ε at the right side
 - two adjacent non-terminals at the right side.

- Ex:

 - $E \rightarrow AB$
 - $A \rightarrow a$
 - $B \rightarrow b$
 - not operator grammar

 - $E \rightarrow EOE$
 - $E \rightarrow id$
 - $O \rightarrow +|*|/$
 - not operator grammar

 - $E \rightarrow E+E |$
 - $E*E |$
 - $E/E | id$
 - operator grammar
Let G be an ϵ-free operator grammar (No ϵ-Production). For each terminal symbols a and b, the following conditions are satisfies.

1. $a \equiv b$, if \exists a production in RHS of the form $\alpha a \beta b \gamma$, where β is either ϵ or a single non Terminal. $Ex\ S \rightarrow iCtSeS$ implies $i \equiv t$ and $t \equiv e$.

2. $a < b$ if for some non-terminal $A \exists$ a production in RHS of the form $A \rightarrow \alpha a A \beta$, and $A \Rightarrow^+ \gamma b \delta$ where γ is either ϵ or a single non-terminal. $Ex\ S \rightarrow iCtS$ and $C \Rightarrow^+ b$ implies $i < b$.

3. $a > b$ if for some non-terminal $A \exists$ a production in RHS of the form $A \rightarrow \alpha A b \beta$, and $A \Rightarrow^+ \gamma a \delta$ where δ is either ϵ or a single non-terminal. $Ex\ S \rightarrow iCtS$ and $C \Rightarrow^+ b$ implies $b > t$.
Precedence Relations

➢ In operator-precedence parsing, we define three disjoint precedence relations between certain pairs of terminals.

\[
\begin{align*}
 a \prec b & \quad \text{b has higher precedence than a} \\
 a = \cdot b & \quad \text{b has same precedence as a} \\
 a \succ b & \quad \text{b has lower precedence than a}
\end{align*}
\]

➢ These relations may appear similar to the ‘less than’, ‘equal to’ and ‘greater than’ operator.

➢ The determination of correct precedence relations between terminals are based on the traditional notions of associativity and precedence of operators.
How to Create Operator-Precedence Relations

➢ We use associativity and precedence relations among operators.

1. If operator O_1 has higher precedence than operator O_2,
 $\Rightarrow O_1 \cdot O_2$ and $O_2 \cdot O_1$

2. If operator O_1 and operator O_2 have equal precedence,
 they are left-associative $\Rightarrow O_1 \cdot O_2$ and $O_2 \cdot O_1$
 they are right-associative $\Rightarrow O_1 \cdot O_2$ and $O_2 \cdot O_1$

3. For all operators O,
 $O \cdot id, \ id \cdot O, \ O \cdot (, (\cdot O, O \cdot),) \cdot O, \ O \cdot $, and $\cdot $ < O

4. Also, let
 (\cdot) $\cdot (id \cdot)$) \cdot > $)
 (\cdot ($\cdot id id \cdot $)) \cdot >$)
 (\cdot id
<table>
<thead>
<tr>
<th></th>
<th>+</th>
<th>-</th>
<th>*</th>
<th>/</th>
<th>^</th>
<th>id</th>
<th>(</th>
<th>)</th>
<th>$</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>></td>
<td>></td>
<td><·</td>
<td><·</td>
<td><·</td>
<td><·</td>
<td><·</td>
<td>></td>
<td>></td>
</tr>
<tr>
<td>-</td>
<td>></td>
<td>></td>
<td><·</td>
<td><·</td>
<td><·</td>
<td><·</td>
<td><·</td>
<td>></td>
<td>></td>
</tr>
<tr>
<td>*</td>
<td>></td>
<td>></td>
<td>>·</td>
<td>>·</td>
<td><·</td>
<td><·</td>
<td><·</td>
<td>></td>
<td>></td>
</tr>
<tr>
<td>/</td>
<td>></td>
<td>></td>
<td>>·</td>
<td>>·</td>
<td><·</td>
<td><·</td>
<td><·</td>
<td>></td>
<td>></td>
</tr>
<tr>
<td>^</td>
<td>></td>
<td>></td>
<td>>·</td>
<td>>·</td>
<td><·</td>
<td><·</td>
<td><·</td>
<td>></td>
<td>></td>
</tr>
<tr>
<td>id</td>
<td>></td>
<td>></td>
<td>>·</td>
<td>>·</td>
<td>>·</td>
<td>>·</td>
<td>>·</td>
<td>></td>
<td>></td>
</tr>
<tr>
<td>(</td>
<td><·</td>
<td><·</td>
<td><·</td>
<td><·</td>
<td><·</td>
<td><·</td>
<td><·</td>
<td><·</td>
<td>=</td>
</tr>
<tr>
<td>)</td>
<td>></td>
<td>></td>
<td>>·</td>
<td>>·</td>
<td>>·</td>
<td>>·</td>
<td>>·</td>
<td>></td>
<td>></td>
</tr>
<tr>
<td>$</td>
<td><·</td>
<td><·</td>
<td><·</td>
<td><·</td>
<td><·</td>
<td><·</td>
<td><·</td>
<td><·</td>
<td><·</td>
</tr>
</tbody>
</table>
Handling Unary Operators

➢ Operator-Precedence parsing cannot handle the unary minus when we also the binary minus in our grammar.

➢ The best approach to solve this problem, let the lexical analyzer handle this problem.
 - The lexical analyzer will return two different operators for the unary minus and the binary minus.
 - The lexical analyzer will need a lookahead to distinguish the binary minus from the unary minus.

➢ Then, we make

\[O < \text{unary-minus} \]

for any operator

\[\text{unary-minus} \rightarrow O \]

if unary-minus has higher precedence than O

\[\text{unary-minus} \leftarrow O \]

if unary-minus has lower (or equal) precedence than O
Compilers using operator precedence parsers do not need to store the table of precedence relations.

The table can be encoded by two precedence functions f and g that map terminal symbols to integers.

For symbols a and b.

- $f(a) < g(b)$ whenever $a < b$
- $f(a) = g(b)$ whenever $a = b$
- $f(a) > g(b)$ whenever $a > b$
Using Operator-Precedence Relations

➢ The intention of the precedence relations is to find the handle of a right-sentential form,

\[<· \text{with marking the left end,} \]

\[=· \text{appearing in the interior of the handle, and} \]

\[·\rangle \text{marking the right hand.} \]

➢ To be more precise, suppose we have a right-sentential form of an operator grammar.

➢ The fact no adjacent non-terminals appear on the right sides of productions implies that no right-sentential form will have two adjacent non-terminals either.

➢ Thus, we may write the right-sentential form as \(\beta_0 a_1 \beta_1 a_2 \ldots a_n \beta_1 \), where \(\beta_i \) each is either \(\varepsilon \) (the empty string) or a single non-terminal, and each \(a_i \) is a single terminal.
Using Operator-Precedence Relations

➢ Suppose that between a_i and a_{i+1} exactly one of the relations \prec, \equiv, and \succ holds. Further let us use $\$\$ to mark each end of the string, and define $\$ \prec \$ B and $B \succ \$.

➢ Now suppose we remove the non-terminals from the string and place the correct relation \prec, \equiv, and \succ, between each pair of terminals and between endmost terminals and the $\$’s marking the ends of the strings.

$E \rightarrow E+E \mid E-E \mid E*E \mid E/E \mid E^E \mid (E) \mid -E \mid id$

The partial operator-precedence table for this grammar:

<table>
<thead>
<tr>
<th></th>
<th>id</th>
<th>+</th>
<th>*</th>
<th>$</th>
</tr>
</thead>
<tbody>
<tr>
<td>id</td>
<td>$>$</td>
<td>$>$</td>
<td>$>$</td>
<td>$>$</td>
</tr>
<tr>
<td>+</td>
<td>$<$</td>
<td>$>$</td>
<td>$<$</td>
<td>$>$</td>
</tr>
<tr>
<td>*</td>
<td>$<$</td>
<td>$<$</td>
<td>$>$</td>
<td>$>$</td>
</tr>
<tr>
<td>$$</td>
<td>$<$</td>
<td>$<$</td>
<td>$<$</td>
<td>$<$</td>
</tr>
</tbody>
</table>

Then the input string ‘id+id*id’ with the precedence relations inserted will be:

$\$ \prec id \succ + \prec id \succ \succ id \succ \succ \succ \succ \succ id \succ \succ \succ \succ \succ \succ \succ \succ \succ $
To Find The Handles

1. Scan the string from left end until the first \to is encountered.

2. Then scan backwards (to the left) over any \to until a \leftarrow is encountered.

3. The handle contains everything to left of the first \to and to the right of the \leftarrow is encountered.

$\leftarrow \text{id} \to + \leftarrow \text{id} \to * \leftarrow \text{id} \to \$$
$\leftarrow + \leftarrow \text{id} \to * \leftarrow \text{id} \to \$
$\leftarrow + \leftarrow \cdot \leftarrow \text{id} \to \$
$\leftarrow + \leftarrow \cdot \leftarrow \cdot \to \$
$\leftarrow + \leftarrow \leftarrow \text{id} \to \$
$\$$

$E \to \text{id}$

$E \to \text{id}$
$E \to \text{id}$
$E \to \text{id}$
$E \to \text{id}$
$E \to \text{id}$
$E \to \text{id}$

$E \to E*E$
$E \to E+E$

$E \to \text{id}$

$\text{id} + \text{id} * \text{id}$$
$\text{E} + \text{id} * \text{id}$$

$\text{E} + \text{id} * \text{id}$$
$\text{E} + \text{id} * \text{id}$$
$\text{E} + \text{id} * \text{id}$$
$\text{E} + \text{id} * \text{id}$$
$\text{E} + \text{id} * \text{id}$$
$\text{E} + \text{id} * \text{id}$$

E
E
E
E
E
E

E
E
E
E
E
E
Operator-Precedence Parsing Algorithm

The input string is w, the initial stack is $\$$ and a table holds precedence relations between certain terminals

Algorithm:

set p to point to the first symbol of w;

repeat forever

if ($\$$ is on top of the stack and p points to $\$$) then return

else {

let a be the topmost terminal symbol on the stack and let b be the symbol pointed to by p;

if ($a < b$ or $a \equiv b$) then {

/* SHIFT */

push b onto the stack;

advance p to the next input symbol;

}

else if ($a > b$) then

/* REDUCE */

repeat pop stack

until (the top of stack terminal is related by $<$ to the terminal most recently popped);

else error();

}
Operator-Precedence Parsing Algorithm - Example

E → E+E | E-E | E*E | E/E | E^E | (E) | -E | id

Stack	Input	Action
$ | id+id*id$ | $< id shift$
$id | +id*id$ | id $>$ + reduce E \rightarrow id
$ | +id*id$ | $< + shift$
$+$ | id*id$ | $< id shift$
$+$ | *id$ | id $>$ * reduce E \rightarrow id
$+$ | *id$ | + $<$ * shift
$+$ | id$ | * $<$ id shift
$+$ | id | id $>$ $ reduce E \rightarrow id
$+$ | *id | * $>$ $ reduce E \rightarrow E*E
$+$ | id | id $>$ $ reduce E \rightarrow E+E
$ | id | accept
Disadvantages of Operator Precedence Parsing

➢ Disadvantages:
 - It cannot handle the unary minus (the lexical analyzer should handle the unary minus).
 - Small class of grammars.
 - Difficult to decide which language is recognized by the grammar.

➢ Advantages:
 - simple
 - powerful enough for expressions in programming languages
LR Parser

• The most powerful shift-reduce parsing (yet efficient) is:

 LR(k) parsing.

 - left to right scanning
 - right-most derivation
 - k lookahead (k is omitted → it is 1)

• LR parsing is attractive because:
 - LR parsing is most general non-backtracking shift-reduce parsing, yet it is still efficient.
 - The class of grammars that can be parsed using LR methods is a proper superset of the class of grammars that can be parsed with predictive parsers.
 LL(1)-Grammars ⊂ LR(1)-Grammars
 - An LR-parser can detect a syntactic error as soon as it is possible to do so a left-to-right scan of the input.