Structure of IR Systems

INST 734
Lecture 1, January 29, 2014
Jiaul Paik
Agenda

• Introductions and Motivation

• The Structure of Interactive IR systems

• Course Overview
Some Holistic Definitions of IR

• A *problem-oriented* discipline, concerned with the problem of the effective and efficient transfer of desired information between human generator and human user.

 Anomalous States of Knowledge as a Basis for Information Retrieval. (1980)

• A process for establishing a view on an information space from a perspective defined by the user.

 Douglas W. Oard, UMD iSchool Professor
Information Retrieval Systems

• Information
 – What is “information”?

• Retrieval
 – What do we mean by “retrieval”?
 – What are different types of information needs?

• Systems
 – How do computer systems fit into the human information seeking process?
Information
What do We Mean by “Information?”

• How is it different from “data”?
 – Information is **data in context**
 • Databases contain data and produce information
 • IR systems contain and provide information

• How is it different from “knowledge”?
 – Knowledge is a **basis for making decisions**
 • Many “knowledge bases” contain decision rules
An Example

• Data
 – 98.6°F, 99.5°F, 100.3°F, 101°F, ...

• Information
 – Hourly body temperature: 98.6°F, 99.5°F, 100.3°F, 101°F, ...

• Knowledge
 – If you have a temperature above 100°F, you most likely have a fever

• Wisdom
 – If you don’t feel well, go see a doctor
Information Hierarchy

• Data
 – The raw material of information

• Information
 – Data organized and presented in a particular manner

• Knowledge
 – “Justified true belief”
 – Information that can be acted upon

• Wisdom
 – Distilled and integrated knowledge
 – Demonstrative of high-level “understanding”
Information Hierarchy

Data

Information

Knowledge

Wisdom

More refined and abstract
Databases vs. IR

<table>
<thead>
<tr>
<th></th>
<th>Databases</th>
<th>IR</th>
</tr>
</thead>
<tbody>
<tr>
<td>What we’re retrieving</td>
<td>Structured data. Clear semantics based on a formal model.</td>
<td>Mostly unstructured. Free text with some metadata.</td>
</tr>
<tr>
<td>Queries we’re posing</td>
<td>Formally (mathematically) defined queries. Unambiguous.</td>
<td>Vague, imprecise information needs (often expressed in natural language).</td>
</tr>
<tr>
<td>Results we get</td>
<td>Exact. Always correct in a formal sense.</td>
<td>Sometimes relevant, often not.</td>
</tr>
<tr>
<td>Interaction with system</td>
<td>One-shot queries.</td>
<td>Interaction is important.</td>
</tr>
<tr>
<td>Other issues</td>
<td>Concurrency, recovery, atomicity are all critical.</td>
<td>Issues downplayed.</td>
</tr>
</tbody>
</table>
Types of information

• Unstructured text (e.g., web pages)
• Structured documents (e.g., XML)
• Images
• Audio (sound effects, songs, etc.)
• Video
• Services
• Codes
Systems
Design Strategies

• Foster human-machine synergy
 – Exploit complementary strengths
 – Accommodate shared weaknesses

• Divide-and-conquer
 – Divide task into stages with well-defined interfaces
 – Continue dividing until problems are easily solved

• Co-design related components
 – Iterative process of joint optimization
Human-Machine Synergy

• Machines are good at:
 – Doing simple things accurately and quickly
 – Scaling to larger collections in sublinear time

• People are better at:
 – Accurately recognizing what they are looking for
 – Evaluating intangibles such as “quality”

• Both are pretty bad at:
 – Mapping consistently between words and concepts
Retrieval
Types of Information Needs

• Retrospective ("Retrieval")
 – “Searching the past”
 – Different queries posed against a static collection
 – Time invariant

• Prospective ("Recommendation")
 – “Searching the future”
 – Static query posed against a dynamic collection
 – Time dependent
What Do We Mean by “Retrieval?”

• Find something that you want
 – The information need may or may not be explicit

• Known item search
 – Find the class home page

• Answer seeking
 – Is Lexington or Louisville the capital of Kentucky?
Relevance

• **Relevance** relates a *topic* and a document
 – Duplicates are equally relevant, by definition
 – Constant over time and across users

• **Pertinence** relates a *task* and a document
 – Accounts for quality, complexity, language, …

• **Utility** relates a *user* and a document
 – Accounts for prior knowledge
Iterative Search

• Searchers often don’t clearly understand
 – The problem they are trying to solve
 – What information is needed to solve the problem
 – How to ask for that information

• The query results from a clarification process
Structure
Divide and Conquer

• Strategy: use *encapsulation* to limit complexity

• Approach:
 – Define *interfaces* (input and output) for each component
 – Define the *functions* performed by each component
 – Build each component (in isolation)
 – See how well each component works
 • Then redefine interfaces to exploit strengths / cover weakness
 – See how well it all works together
 • Then refine the design to account for unanticipated interactions

• Result: a hierarchical decomposition
Supporting the Search Process

1. Source Selection
2. Query Formulation
3. Search
4. Selection
5. Examination
6. Delivery
Supporting the Search Process

1. **Source Selection**
 - IR System

2. **Query Formulation**
 - Query

3. **Search**
 - Index
 - Ranked List

4. **Selection**
 - Document

5. **Examination**
 - Document

6. **Acquisition**
 - Collection

7. **Delivery**
The IR Black Box
Inside The IR Black Box

Query Representation Function

Query Representation

Ranking Function

Index

Document Representation Function

Document Representation

Hits
Representation
Counting Terms

• Terms tell us about documents
 – If “dog” appears a lot, it may be about dogs

• Documents tell us about terms
 – “the” is in every document -- not discriminating

• Documents are most likely described well by rare terms that occur in them frequently
 – Higher “term frequency” is stronger evidence
 – Low “document frequency” makes it stronger still
“Bag of Terms” Representation

- Bag = a “set” that can contain duplicates
 ➢ “The quick brown fox jumped over the lazy dog’s back” → \{back, brown, dog, fox, jump, lazy, over, quick, the, the\}

- Vector = values recorded in any consistent order
 ➢ \{back, brown, dog, fox, jump, lazy, over, quick, the, the\} → [1 1 1 1 1 1 1 2]
Bag of Terms Example

Document 1
The quick brown fox jumped over the lazy dog’s back.

Document 2
Now is the time for all good men to come to the aid of their party.

<table>
<thead>
<tr>
<th>Term</th>
<th>Document 1</th>
<th>Document 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>aid</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>all</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>back</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>brown</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>come</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>dog</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>fox</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>good</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>jump</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>lazy</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>men</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>now</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>over</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>party</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>quick</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>their</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>time</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Stopword List
- for
- is
- of
- the
- to
Learning From Linking Behavior

Diagram:
- Hub
- Authority

Nodes and edges represent the relationships between hubs and authorities.
Indexing

• Organizing documents
 – To facilitate faster retrieval

• Some relevant data structures
 – Inverted index
 – Hashing
 – Search trees

• Index construction algorithms
 – Static
 – Dynamic
 – Distributed
Retrieving
Types of Retrieval

• Boolean
 – Find documents that have “Maryland” and “University”

• Ranked
 – Order documents based on some score
Ranking

• Term weighting
 – How important a term for a document/object of interest?

• Weight combination
 – How to combine individual weights to produce composite score (the basis of ranking)
Types of Evidence
Some common evidences

• Content
 – Words in a document

• Metadata
 – Image tags

• User behavior data
 – Number of clicks on a document
Structure of the Course
Course Goals

• Appreciate IR system capabilities and limitations

• Understand IR system design & implementation
 – For a broad range of applications and media

• Evaluate IR system performance

• Identify current IR research problems
Course Design

• Readings provide background and detail

• Class provides organization and direction
 – We will not cover every detail

• Homework and project provide experience

• Final exam helps focus your effort
Assumed Background

• Knowledge of programming
• Basic scripting language
• Basic math (e.g.,) (don't worry!)
 1. probability
 2. matrix algebra
 3. concept of vector
Grading

• Homework (20%)
 – Mastery of concepts and experience using tools

• Term project (50%)
 – Details will be given on course Web page

• Final exam (30%)
 – In-class exam (open book)
Important Things to Know

• Office hours: 5 PM Thursdays
 – Or schedule by email, or ask after class

• Everything is on the Web
 – http://www.umiacs.umd.edu/~jiaul/teaching/ir

• Easiest way to reach me by email
 – jia.paik@gmail.com
Some Things to Do This Week

Homeworks
 – Will be given on Mondays based on the previous lecture
 – Due at 6 PM next Monday!!

• Do the reading **before** class
 – Read for ideas, not detail

• Explore the Web site
 – Start thinking about the term project