1. Label the nodes of a complete binary tree of height 3 with numbers 1 to 15, such that on performing the post order traversal the labels appear in strictly increasing order.

2. Write a recursive and a non-recursive algorithm to calculate the height of an ordered tree. Compare the running times of both the algorithms.

3. Given a binary tree representing an arithmetic expression. Write an algorithm (1) to evaluate the expression, (2) print the expression in fully-parenthesised form.

4. Write a non-recursive preorder traversal algorithm for a proper binary tree.

5. Given a node v of a proper binary tree, write an algorithm to find the (1) inorder successor, (2) postorder successor, and (3) preorder successor of the node v.

6. Let T be a binary tree with n nodes such that all the external nodes have the same depth. Let D_e be the sum of the depths of all the external nodes, and let D_i be the sum of the depths of all the internal nodes. Establish a relation between D_i, D_e and n and prove it.

7. Describe how to implement a Queue using two Stacks. Find the amortized running time for dequeue and enqueue operations.
8. Describe how to implement a Stack using two Queues. What is the running time of the \textit{push} and \textit{pop} operations.

9. Let T be a tree with n nodes. Define the lowest common ancestor (LCA) between the two nodes v and w as the lowest node in T that has both v and w as descendents. Given v and w, describe an efficient algorithm to find the LCA of v and w. What is the running time.

10. The \textit{Balance Factor} of an internal node v of a binary tree is the difference between the heights of the right and left subtrees of v. Write a recursive algorithm to print the balance factor of all the nodes of a given binary tree.