1. A queue is implemented using an array of size N. Variable f is equal to the index of the cell containing the next element to be deleted, and variable r is equal to the index of the cell where the next element will be added. Give a single formula to calculate the number of elements in the queue, if the queue is circular.

2. Write a traversal algorithm for proper binary trees in which the nodes at depth d are visited before the nodes at depth $d+1$.

3. Let us define a function p from the set of nodes of a proper binary tree T to the set of natural numbers as follows:

 - If v is the root of T, then $p(v) = 1$
 - If v is the left child of node u, then $p(v) = 2 \cdot p(u)$.
 - If v is the right child of node u, then $p(v) = 2 \cdot p(u) + 1$.

 If n is the total number of nodes, then show that the maximum value of $p(v)$ satisfies $n \leq p(v) \leq 2^{(n+1)/2} - 1$

4. Show that the summation $\sum_{i=1}^{n} \lceil \log_2(n/i) \rceil$ is $O(n)$.

5. Given two ordered sequences corresponding to sets A and B, write an algorithm to compute a sequence corresponding to the set (a) $A \cup B$ (b) $A \cap B$

6. Let A and B be two sequences of n integers each. Given an integer x,
describe an n^2-time algorithm for determining if there is an integer a in A and an integer b in B such that $x = a + b$. Can you come up with an $O(n \log n)$-time algorithm for the same problem.

7. What is the probability that in a random ordering of bridge card deck, the ace of spade precedes the king of hearts.

8. Prove that if two events A and B are independent, then their respective complements are also independent.

9. Let C be the probability space of all the n-term sequences of 0s and 1s. Define a random variable f s.t $\forall s \in C : f(s) =$ number of 1s in s. Determine the expected value of f in multiple ways.

10. Let there be n hunters and n rabbits. Each of the n hunters selects a rabbit at random and then all the hunters shoot at once. Find the expected number of surviving rabbits.