Recursive Equations

Analysis of recursive algorithms results in recursive equations. If $T(n)$ is the time taken to find the max element in an array of size n, then:

\begin{itemize}
 \item $T(n) = c_1$, if $n = 1$
 \item $T(n) = T(n - 1) + c_2$, otherwise
\end{itemize}

The closed-form solution is \cdots
Recursive Equations

Analysis of recursive algorithms results in recursive equations. If $T(n)$ is the time taken to find the max element in an array of size n, then.

- $T(n) = c_1$, if $n = 1$
- $T(n) = T(n-1) + c_2$, otherwise

The closed-form solution is ⋅⋅⋅

$T(n) = c_2(n-1) + c_1$
Recursive Equations

- At times recursive equations can be tricky.
- **Master Theorem** is used to solve recurrence equations in asymptotic terms.
Recurrence relations can also be used to define a sequence

- Example: $x_{n+1} = c \cdot x_n$, given ($n \geq 0; x_0 = 1$)

The closed-form solution is ...
Recurrence relations can also be used to define a sequence

Example: $x_{n+1} = c \cdot x_n$, given ($n \geq 0; x_0 = 1$)

The closed-form solution is ...

$x_n = c^n$
Recursive Equations

A slightly different one: \(x_{n+1} = b_{n+1} \cdot x_n \)

Given:

- \(n \geq 0 \)
- the value of \(x_0 \)
- the set \(\{ b_1, b_2, \ldots \} \)

The closed-form solution is ...
Recursive Equations

A slightly different one: \(x_{n+1} = b_{n+1} \cdot x_n \)

Given:
- \(n \geq 0 \)
- the value of \(x_0 \)
- the set \(\{b_1, b_2, \ldots \} \)

The closed-form solution is ...
\[
x_n = b_n \cdot b_{n-1} \cdot b_{n-2} \cdots b_1 \cdot x_0
\]
Recursive Equations

Let us raise the ante further: \(x_{n+1} = b_{n+1}x_n + c_{n+1} \)

Given:

- \(n \geq 0 \)
- the value of \(x_0 \)
- the set \(\{b_1, b_2, \cdots \} \)
- the set \(\{c_1, c_2, \cdots \} \)
Recursive Equations

Let us raise the ante further: \(x_{n+1} = b_{n+1}x_n + c_{n+1}\)

Given:
- \(n \geq 0\)
- the value of \(x_0\)
- the set \(\{b_1, b_2, \cdots\}\)
- the set \(\{c_1, c_2, \cdots\}\)

Hint: Reduce it to the form \(y_{n+1} = y_n + d_{n+1}\)
Example: $x_{n+1} = 3x_n + n$, where $(n \geq 0; x_0 = 0)$

If $x_n = 3^n y_n$ then we get

$$y_{n+1} = y_n + n/3^{n+1}, \text{ where } n \geq 0; y_0 = 0$$
Example: \(x_{n+1} = 3 \cdot x_n + n \), where \((n \geq 0; x_0 = 0) \)

If \(x_n = 3^n \cdot y_n \) then we get

\[
y_{n+1} = y_n + \frac{n}{3^{n+1}}, \text{ where } n \geq 0; y_0 = 0
\]

Finally we get: \(x_n = 3^n \sum_{j=1}^{n-1} \frac{j}{3^{j+1}} \)
Recursive Equations

Till now we have only considered first-order recursive equations.

Note:

- In first-order recursive equations, the current value depends only on the previous value.
- In second-order recursive equations, the current value depends on the previous two values.
Recursive Equations

Let the equation be: $x_{n+1} = a.x_n + b.x_{n-1}$

Given:

- $n \geq 1$
- the value of x_0, x_1 and a, b
Let the equation be: $x_{n+1} = a \cdot x_n + b \cdot x_{n-1}$

Given:

- $n \geq 1$
- the value of x_0, x_1 and a, b

Hint: Call for a trial solution (as you solve second-order differential equations)
Recursive Equations

Let the equation be: \(x_{n+1} = a \cdot x_n + b \cdot x_{n-1} \)

Follow the following steps:

- Let the trial solution be \(x_n = \alpha^n \), and substitute it in the given equation
- We obtain the quadratic equation \(\alpha^2 = a \cdot \alpha + b \)
- If \(\alpha_+ \) and \(\alpha_- \) are the distinct roots, the general solution is \(x_n = c_1 \cdot \alpha_+^n + c_2 \cdot \alpha_-^n \)
- The constants \(c_1 \) and \(c_2 \) will be determined so that \(x_0, x_1 \) have the assigned values.
Example

$L_0 = 100000, L_1 = 200000$, and $L_n = (L_{n-1} + L_{n-2})/2$

- The characteristic polynomial is \(\cdots \)
- The roots are \(\cdots \)
- The general solution is \(\cdots \)
- The values of c_1 and c_2 are \(\cdots \)
Example

\[L_0 = 100000, \quad L_1 = 200000, \quad \text{and} \quad L_n = \frac{(L_{n-1} + L_{n-2})}{2} \]

- The characteristic polynomial is \(x^2 - x/2 - 1/2 \)
- The roots are 1 and \(-1/2\)
- The general solution is \(L_n = c_1 + c_2 (-1/2)^n \)
- \(c_1 = \frac{500000}{3} \) and \(c_2 = -\frac{200000}{3} \).