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Abstract

Closed form expressions for the capacity of multiple an-
tenna systems in the presence of Rayleigh flat fading
is derived for two sub-optimal adaptive transmission
schemes, namely channel inversion (CI) and truncated
channel inversion (TCI), assuming channel state infor-
mation (CSI) is available at both the transmitter and
the receiver. Moreover, an upper bound for the capac-
ity of a multiple-input multiple-output (MIMO) system
with only receiver-side channel state information (Rx-
CSI) is also presented. Our results suggest that the
difference in capacity between the optimal and these
sub-optimal schemes reduces as the number of diversity
branches increases. Further, in some cases, the capac-
ity with sub-optimal adaptive schemes can be greater
than that of a Rx-CSI only system.

1. INTRODUCTION

The capacity of fading channels varies depending
on the assumptions one makes about fading statistics
and the knowledge of fading coefficients. For example,
[1] considered the capacity of multiple-input multiple-
output (MIMO) systems when channel state informa-
tion (CSI) is available only at the receiver. In this pa-
per, we consider the capacity of multiple antenna sys-
tems with sub-optimal adaptive transmission schemes,
with CSI available at both the transmitter and the re-
ceiver. This analysis has been previously considered
for single antenna systems by Goldsmith and Varaiya
in [2]. These adaptation techniques were later ap-
plied to single-input-multiple-output (SIMO) systems
with various diversity combining techniques by Alouini
and Goldsmith [3] and to multiple-input-single-output
(MISO) and MIMO systems by Jayaweera and Poor [4].

In this paper, we first obtain closed form capacity
expressions for MIMO systems under channel inversion
(CI) and truncated channel inversion (TCI). Then, we
derive the capacity expression for the special case of

a MISO system and observe that this capacity is the
same as that of a SIMO system employing maximal ra-
tio combining (MRC) at the receiver as shown in [3].
This can be attributed to the principle of reciprocity
which is valid when CSI is available at both transmit-
ter and receiver. From our numerical results, it can
be observed that as the number of diversity branches
increases the capacity of these sub-optimal schemes ap-
proach that of the optimal scheme. Next, we provide an
upper bound for the capacity of a receiver-side channel
state information (Rx-CSI) only MIMO system whose
exact capacity expression was obtained in [1] as an in-
tegral. In the sequel, we have also provided a direct
method of evaluating moments of unordered eigenval-
ues of a central Wishart matrix that is instrumental in
evaluating the above upper bound.

The rest of this paper is organized as follows. In sec-
tion 2, we present our system model and assumptions.
In section 3, we obtain the capacity of a MIMO system
with the sub-optimal adaptive transmission schemes,
from which we obtain the capacity for the special case
of a MISO system. Also, we obtain an upper bound
for the capacity of a Rx-CSI only system. Section 4
presents numerical results and section 5 contains con-
clusions. The derivation of the l− th moment of an un-
ordered eigenvalue of a central Wishart matrix is given
in the Appendix.

2. SYSTEM MODEL DESCRIPTION

We consider a single user, flat fading communica-
tions link in which the transmitter and receiver are
equipped with NT and NR antennas respectively. The
discrete-time received signal in such a system can be
written as

y(i) = H(i)x(i) + n(i) (1)

where y(i) is the NR×1 received signal vector and x(i)
is the NT × 1 transmitted signal vector. The matrix



H (i) in (1) is the NR ×NT matrix of complex fading
coefficients which are assumed to be ergodic and sta-
tionary. We assume the elements of the matrix H(i)
are independent and identically distributed (i.i.d) cir-
cularly symmetric complex Gaussian random variables
with zero mean and a variance of 1/2 per dimension.
This gives rise to a Rayleigh fading channel model.
The n(i) is the NR × 1 receiver noise vector at time
i. Also, E

{
n(i)n(i)H

}
= N0INR

, where INR
denotes

the NR ×NR identity matrix.
We assume that the CSI is available at both

the transmitter and receiver and that the transmit-
ter is subjected to an average power constraint; i.e.,
E
{
xHx

}
= P , where P is the total transmitter power.

It will be shown shortly that the capacity is depen-
dent on the transmitter and receiver antennas only
through the relative parameters n = max {NR, NT }
and m = min {NR, NT }. Also, in this paper the base
of the logarithm is taken to be two and hence capacity
is expressed in bits.

3. CAPACITY OF MIMO SYSTEMS WITH
SUB-OPTIMAL ADAPTIVE TRANSMIS-
SION SCHEMES

3.1. Capacity of MIMO Systems with Channel
Inversion

We start by considering the capacity of a MIMO
system with channel inversion. In general, we may de-
compose the matrix H using singular value decompo-
sition (SVD) and write the received vector as in [4] to
be

ỹ = Λx̃ + ñ. (2)

where ỹ, x̃ and ñ are unitary transformations of y, x
and n respectively. Λ is a diagonal matrix that contains
the non-negative square roots of eigen values of either
HHH or HHH. Also, the average power constraint can
be re-written as tr

{
Q̃
}

= P , where Q̃ = E
{
x̃x̃H

}
. As

in [4], let us define

Λ′ (i) =
√

P

mN0
Λ (i) . (3)

Also, let us define the following m×m matrix,

W =
{

HHH if NR ≤ NT

HHH if NR > NT
. (4)

The distribution of W in (4) is given by the well-known
complex central Wishart distribution.

Using the transformed model in (2) and using the
definition in (3), we define the average capacity of the

vector, time-varying channel with adaptive transmis-
sion scheme as in [4] to be

C = max
Q̃(Λ′)>0, tr(E{Q̃(Λ′)})=P

EΛ′

{
log2 det

(
I +

Λ′Q̃ (Λ′)Λ′

(P/m)

)}
.

(5)

Note that, here we assume that the channel variations
are much slower compared to the data rate.Thus, the
channel coefficients stay constant over a long block of
symbols and then changes from block to block inde-
pendently. The capacity given in (5) generalizes the
definition used in [2] and [3] to a MIMO channel.

It can be shown that maximization in (5) is achieved
by a diagonal Q̃ (Λ′). Thus, we obtain

C =
m∑

i=1

E

[
log2

(
1 +

Q̃ii

(P/m)
γi

)]
, (6)

where we define, γi = γλi is the received signal-to-noise
ratio (SNR), γ = P

mN0
is the average received SNR and

Q̃ii is the (i, i)-th diagonal element of the matrix Q̃.
Note that λi corresponds to the i-th eigenvalue of the
central Wishart matrix defined in (4).

The probability density function (pdf) pλ (λ) of an
unordered eigenvalue of a central Wishart distributed
matrix was given in [1], and can be written as

pλ (λ) =
e−λλn−m

m

m∑
k=1

(k − 1)!
(n−m + k − 1)!

[
Ln−m

k−1 (λ)
]2

, (7)

where the associated Laguerre polynomial of order
k, Ln−m

k , for k ≥ 0, is defined by [5],

La
k (λ) =

1
k!

eλλ−a dk

dλk

[
eλλa+k

]
. (8)

If we let fγ (γ) denote the pdf of any unordered γi, for
i = 1, 2, · · · ,m, then we have,

fγ (γ) =
1
γ̄

pλ

(
γ

γ̄

)
. (9)

In the case of CI, the transmitter uses instantaneous
CSI to keep the received SNR per eigen-mode constant:
i.e.,

Q̃iiγi

P/m
= σ .

Using the power constraint we can show that,

σ =
1

Eγ

[
1
γ

] .



Using equation 7.414.12, applying a transformation for-
mula for a hypergeometric function (equation 9.134.3)
and using the definition of hypergeometric series (equa-
tion 9.100) in [5] it is straightforward to show that
σ = 1

γ(n−m) , for the case of CI. Thus, we can sim-
plify (6) and obtain capacity of a MIMO system with
CI to be

CCI
MIMO = m log2 (1 + γ (n−m)) bits/channel use.

(10)

Note that, since m = 1 when NR = 1 (which corre-
sponds to that of a MISO system), the capacity ex-
pression (10) reduces to

CCI
MISO = log2 (1 + γ (n− 1)) bits/channel use , (11)

which is the same as the capacity of a SIMO system
with CI and receiver maximal-ratio combining as de-
rived in [3].

3.2. Capacity of MIMO Systems with Trun-
cated Channel Inversion

There can be a large capacity penalty with the
above channel inversion method, especially when only
a small number of diversity branches are available. In
those cases, we may instead consider the truncated
channel inversion. Here, channel inversion is performed
only when the SNR γ is above a certain threshold γ0.
i.e.,

P (γ) =
{ σ

γ P, γ ≥ γ0

0, γ < γ0
.

Using the polynomial representation of a Laguerre
polynomial (equation 8.970.1 of [5]) followed by the
definition of complementary incomplete gamma func-
tion (equation 8.350.2 of [5]) we can show σ for the
case of TCI to be

σ =
mγ

A
, (12)

where

A =
m∑

k=1

(k − 1)!
(n−m + k − 1)!

k−1∑
p=0

k−1∑
q=0

(−1)p+q

p!q!(
n−m + k − 1

k − 1− p

)(
n−m + k − 1

k − 1− q

)
Γ
(

n−m + p + q,
γ0

γ

)
, (13)

and the complementary incomplete gamma function is
defined as Γ (a, x) =

∫∞
x

e−tta−1dt.

Then capacity in this case is given by,

CTCI
MIMO = log2 (1 + σTCI)

m∑
k=1

(k − 1)!
(n−m + k − 1)!

k−1∑
p=0

k−1∑
q=0

(−1)p+q

p!q!

(
n−m + k − 1

k − 1− p

)(
n−m + k − 1

k − 1− q

)
Γ
(

n−m + p + q + 1,
γ0

γ

)
.

(14)

Again, for NR = 1, the capacity of a MISO system with
TCI simplifies to

CTCI
MISO = log2

1 +
(n− 1)!γ

Γ
(
n− 1, γ0

γ

)
 Γ

(
n, γ0

γ

)
(n− 1)!

,

(15)

which is the same as capacity of a SIMO system with
TCI and receiver MRC as derived in [3].

3.3. Upper Bound for Rx-CSI only MIMO Sys-
tems

In this sub-section we present an upper bound for
the capacity of a Rx-CSI only system for which an in-
tegral expression was derived in [1]. Since logarithm
is a concave function, using the Jensen’s inequality we
can write

CRx−CSI ≤ m log2

(
1 +

P

N0NT
Eλ {λ}

)
. (16)

The l − th moment of an unordered eigenvalue of a
central Wishart matrix can be shown to be (See Ap-
pendix)

Eλ

{
λl
}

=
1
m

m∑
k=1

(n−m + l)!
[

1
(n−m)!

+

(
l+1
1

)(
k−1
1

)(
l
1

)
(n−m + 1)!

+

(
l+2
2

)(
k−1
2

)(
l
2

)
2!

(n−m + 2)!
+ · · ·

+

(
2l
l

)(
k−1

l

)(
l
l

)
l!

(n−m + l)!

]
.

(17)

From (17), when l = 1,

Eλ {λ} = n . (18)

From (18) and (16) the upper bound for the capacity
of a Rx-CSI only system can be written as

CRx−CSI ≤ m log2

(
1 +

P

N0NT
n

)
. (19)



It is worth recalling that, Telatar showed in [1] that
for fixed receive antennas and increasing transmit an-
tennas (i.e. NR fixed and NT → ∞) the asymptotic
capacity is given by

CNT→∞
Rx−CSI = NR log2

(
1 +

P

N0

)
. (20)

4. NUMERICAL RESULTS

Figures (1) and (2) show the capacity of a MIMO
system with receive antennas fixed at NR = 4 and in-
creasing transmit antennas. Figure (1) compares the
capacity of CI and TCI with the optimal adaptation
scheme used in [4]. Note that this optimal adaptation
scheme is a space-time water filling algorithm. As the
results indicate, with the increase in number of trans-
mit antennas the difference in capacity between opti-
mal adaptation and that of CI or TCI reduces. Also, for
large values of NT , CI and TCI have almost the same
capacity. Figure (2) compares the capacity of CI and
TCI with Rx-CSI only system. For NT = 4, Rx-CSI
only system has a greater capacity than CI and TCI,
but as the number of diversity branches increases the
capacity of both sub-optimal schemes is greater than
that of the Rx-CSI only system. Fig. (2) also shows
the derived upper bound for a Rx-CSI only system for
NT = 12. Note that, for all numerical calculations in-
volving TCI we have set γ0

γ = 0.5.

5. CONCLUSIONS

We considered the capacity of multiple-antenna sys-
tems in Rayleigh flat fading with sub-optimal adaptive
transmission schemes, namely channel inversion and
truncated channel inversion. We first derived the ca-
pacity of a MIMO system with these sub-optimal adap-
tive transmission schemes, using which we obtained the
capacity of a MISO system as a special case. We also
derived an upper bound for the capacity of a Rx-CSI
only MIMO system and derived the l − th moment
of an unordered eigenvalue of a central Wishart ma-
trix in general. Our numerical results suggest that
for the case of fixed receive antennas and increasing
number of transmit antennas, the sub-optimal schemes
have greater capacity than the Rx-CSI only system
for large values of NT . Also, as the number of diver-
sity branches increases the difference in capacity be-
tween optimal space-time water filling and the two sub-
optimal schemes decreases.

Appendix

Moments of any Unordered Eigenvalue of a
Central Wishart Matrix

Using the pdf of any unordered eigenvalue of a
central Wishart matrix in (7), we have

Eλ

{
λl
}

=∫ ∞

0

λl e−λλn−m

m

m∑
k=1

(k − 1)!
(n−m + k − 1)!

[
L

(n−m)
k−1 (λ)

]2
dλ

(21)

Identifying (21) with equation 7.414.12 in [5] followed
by the application of a series of transformation for-
mula for hypergeometric functions (equations 9.134.2
and 9.131.1 of [5] respectively) we get,

Eλ

{
λl
}

=
m∑

k=1

1
m

(n−m + l)!
(k − 1)! (n−m)!

{
dk−1

dhk−1F
(
l + 1,−l;n−m + 1; h

h−1

)
(1− h)


h=0

,

(22)

where F (α, β; γ; z) is the Gauss hypergeometric func-
tion defined as

F (α, β; γ; z) = 1 +
α.β

γ.1
z +

α (α + 1) β (β + 1)
γ (γ + 1) .1.2

z2 + · · · · · · (23)

Upon applying the definition of Gauss hypergeometric
function in (23) to (22) we obtain (17).
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